精英家教网 > 高中数学 > 题目详情

设函数.

(1)当时,求函数的最大值;

(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围;

(3)当时,方程有唯一实数解,求的值.

 

【答案】

(1)函数的最大值为;(2)实数的取值范围是;(3).

【解析】

试题分析:(1)将代入函数的解析式,然后利用导数求出函数的最大值;(2)先确定函数的解析式,并求出函数的导数,然后利用导数的几何意义将问题转化为,利用恒成立的思想进行求解;(3)将代入函数的解析式并确定函数的解析式,构造新函数,利用导数求出函数的极值,利用极值为零来求出参数的值.

试题解析:(1)依题意,的定义域为

时,

,得,解得

,得,解得.

单调递增,在单调递减;

所以的极大值为,此即为最大值;

(2),则有上有解,

所以当时,取得最小值

(3)因为方程有唯一实数解,所以有唯一实数解,

,则

,所以由

,所以上单调递增,

上单调递减,.

有唯一实数解,则必有

所以当时,方程有唯一实数解.

考点:1.利用导数求函数的最值;2.函数不等式恒成立;3.参数分离法;4.函数的零点

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年上海市黄浦区格致中学高三(上)第二次测验数学试卷(理科)(解析版) 题型:解答题

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市黄浦区格致中学高三(上)第二次测验数学试卷(理科)(解析版) 题型:解答题

设函数
(1)当b=0时,已知f(x)在[2,+∞)上单调递增,求a的取值范围;
(2)当a是整数时,存在实数x,使得f(x)是f(x)的最大值,且g(x)是g(x)的最小值,求所有这样的实数对(a,b);
(3)定义函数h(x)=-(x-2k)2-2(x-2k),x∈(2k-2,2k),k=0,1,2,…,则当h(x)取得最大值时的自变量x的值依次构成一个等差数列,写出该等差数列的通项公式(不必证明).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省原名校高三下学期第二次联考文科数学试卷(解析版) 题型:解答题

设函数

(1)当a=l时,求函数的极值;

(2)当a2时,讨论函数的单调性;

(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求

实数m的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省高三上学期第二次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北省武汉市高一上学期期中数学试卷(解析版) 题型:解答题

设函数

(1)当时,求所有使成立的的值。

(2)若为奇函数,求证:

(3)设常数,且对任意x<0恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案