精英家教网 > 高中数学 > 题目详情
已知数列{an}为等比数列,其前n项和为Sn,已知a1+a4=-
7
16
,且有S1,S3,S2成等差;
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=n(n∈N+),记Tn=|
b1
a1
|+|
b2
a2
|+|
b3
a3
|+…+|
bn
an
|,求Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设出等比数列的公比q,由S1,S3,S2成等差列式求得q,结合a1+a4=-
7
16
求得首项,则数列{an}的通项公式可求;
(Ⅱ)把an、bn代入|
bn
an
|,整理后利用错位相减法求Tn
解答: 解:(Ⅰ)设等比数列{an}的公比为q,
∵S1,S3,S2成等差,
∴2(a1+a1q+a1q2)=a1+a1+a1q.
整理得:2a1(1+q+q2)=a1(2+q).
∵a1≠0,
∴2+2q+2q2=2+q.
∴2q2+q=0,
又q≠0,∴q=-
1
2

a1+a4=a1(1+q3)=-
7
16

把q=-
1
2
代入后可得a1=-
1
2

an=a1qn-1=(-
1
2
)×(-
1
2
)n-1
=(-
1
2
)n

(Ⅱ)∵bn=n,an=(-
1
2
)n

|
bn
an
|=|
n
(-
1
2
)n
|=n•2n

Tn=1×21+2×22+3×23+…+n•2n
2Tn=1×22+2×23+3×24+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+23+…+2n-n•2n+1=
2(1-2n)
1-2
-n•2n+1

Tn=(n-1)•2n+1+2
点评:本题考查了等差数列的性质,考查了等比数列的通项公式,训练了错位相减法求数列的和,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线f(x)=x3+x-2在点P处的切线的斜率为4,则P点的坐标为(  )
A、(1,0)
B、(1,0))或(-1,-4)
C、(1,8)
D、(1,8)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x+x-a
=x(a∈R)在[-1,1]上有解,则a的取值范围是(  )
A、[1,2]
B、[-
1
2
,1
]
C、[1,3]
D、[-
1
2
,3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点不共线,空间内任一点O满足
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),则“x+y+z=1”是“点P在由A,B,C所确定的平面内”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(x,1),
b
=(1,2-x),
a
b
,则|
a
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面ABCD是∠A=60°的菱形且PD=AD=2,又PD⊥底面ABCD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列一些关于数列{an}的命题:
①若{an}既是等差数列,又是等比数列,则{an}一定是常数数列;
②若{an}是等比数列,则数列{an+an+1}一定也是等比数列;
③若{an}满足递推公式an+1=an•q,则{an}一定是等比数列;
④若{an}的前n项和Sn=qn-1,则{an}一定是等比数列.
其中正确的有
 
(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足z•(1-i)=2-i(i为虚数单位),则复数z=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,b=1,c=
2
,且
OA
+
AC
+
OB
=
0
(O是此三角形外心),则
AB
AO
=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

同步练习册答案