精英家教网 > 高中数学 > 题目详情

已知抛物线E:y2= 4x,点P(2,O).如图所示,直线.过点P且与抛物线E交于A(xl,y1)、B( x2,y2)两点,直线过点P且与抛物线E交于C(x3, y3)、D(x4,y4)两点.过点P作x轴的垂线,与线段AC和BD分别交于点M、N.

(I)求y1y2的值;

(Ⅱ)求讧:|PM|="|" PN|

 

【答案】

(I)(Ⅱ)证明如下

【解析】

试题分析:解:(1)令直线

证明:(2)直线,即

同理

考点:抛物线

点评:关于曲线的大题,当涉及到交点时,常用到根与系数的关系式:)。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四个点.
(Ⅰ)求r的取值范围;
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线方程y2=mx(m∈R,且m≠0).
(Ⅰ)若抛物线焦点坐标为(1,0),求抛物线的方程;
(Ⅱ)若动圆M过A(2,0),且圆心M在该抛物线上运动,E、F是圆M和y轴的交点,当m满足什么条件时,|EF|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:y2=2px(p>0)经过圆F:x2+y2-2x+4y-4=0的圆心,则抛物线E的准线与圆F相交所得的弦长为
2
5
2
5

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:解答题

如图所示,已知抛物线E:y2=x与圆M:(x-4)2+y2=r2(r>0)相交于ABCD四个点.

(1)r的取值范围;

(2)当四边形ABCD的面积最大时,求对角线ACBD的交点P的坐标.

 

查看答案和解析>>

同步练习册答案