精英家教网 > 高中数学 > 题目详情

(10分)证明为R上的单调递增函数

见解析。

解析试题分析:设是R上的任意两个实数且,则,因为,所以x1-x2<0.有x12+x22+x1x2>0,
所以(x1-x 2)( x12+x22+x1x2)<0,即,所以为R上的单调递增函数。
考点:本题考查用定义证明函数的单调性。
点评:用定义证明函数单调性的步骤:一设二作差三变形四判断符号五得出结论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ) 若a =1,求函数的图像在点处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)如果当时,恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)已知函数(其中为常数,)为偶函数.
(1) 求的值;
(2) 用定义证明函数上是单调减函数;
(3) 如果,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知-1≤x≤2,求函数f(x)=3+2·3x+1-9x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知f (x)=
(1)求函数f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用单调性定义证明在[2,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)如图,△OAB是边长为2的正三角形,记△OAB位于直线左侧的图形的面积为。试求函数的解析式,并画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的值;
(2)若的图像与直线相切于点,求的值;
(3)在(2)的条件下,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)是否存在实数使函数f(x)为奇函数?证明你的结论;
(2)用单调性定义证明:不论取任何实数,函数f(x)在其定义域上都是增函数;
(3)若函数f(x)为奇函数,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数的值域;
(2)若时,函数的最小值为,求的值和函数 的最大值.

查看答案和解析>>

同步练习册答案