精英家教网 > 高中数学 > 题目详情
4.设向量$\overrightarrow{OA}=(5+cosθ,4+sinθ)$,$\overrightarrow{OB}=(2,0)$,则$|\overrightarrow{AB}|$的取值范围是[4,6].

分析 $\overrightarrow{AB}$=$\overrightarrow{OB}-\overrightarrow{OA}$,可得$|\overrightarrow{AB}|$=$\sqrt{26+10sin(θ-φ)}$,利用正弦函数的单调性与值域即可得出.

解答 解:$\overrightarrow{AB}$=$\overrightarrow{OB}-\overrightarrow{OA}$=(-3-cosθ,-4-sinθ),
∴$|\overrightarrow{AB}|$=$\sqrt{(-3-cosθ)^{2}+(-4-sinθ)^{2}}$=$\sqrt{26+8sinθ+6cosθ}$=$\sqrt{26+10sin(θ-φ)}$∈[4,6].
故答案为:[4,6].

点评 本题考查了数量积运算性质、正弦函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设{an}满足:a1=2,an+1=Sn+n,n∈N*,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l经过直线3x+y-1=0与直线x-5y-11=0的交点,且与直线x+4y=0垂直.
(1)求直线l的方程;
(2)求直线l被圆:x2+(y-11)2=25所截得的弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=lg(2-x)定义域为(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求值:${8^{\frac{2}{3}}}+{2^{{{log}_2}3}}+{({\frac{1}{4}})^0}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=4$,求x+x-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆的焦点为(-1,0)和(1,0).点P(2,0)在椭圆上,则椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商品的进价是40元/kg,现在的售价是60元/kg,每周可卖出300kg.根据市场调查,该商品每涨价1元,每周要少卖出10kg;每降价1元,每周可多卖出20kg.如果要对该商品涨价,那么涨价的范围是多少才能使每周的利润不少于6240元?如果要对该商品降价,那么降价的范围是多少才能使每周的利润不少于6240元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的函数f(x)满足:对于任意x,都有f(x)=f(x-1)+f(x+1),则f(x)的一个周期为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知角α的终边在直线y=x上,求sinα+cosα的值.

查看答案和解析>>

同步练习册答案