【题目】如图,O为总信号源点,A,B,C是三个居民区,已知A,B都在O的正东方向上,OA=10km,OB=20km,C在O的北偏西45°方向上,CO=5 km.
(1)求居民区A与C的距离;
(2)现要经过点O铺设一条总光缆直线EF(E在直线OA的上方),并从A,B,C分别铺设三条最短分光缆连接到总光缆EF.假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m(m为常数).设∠AOE=θ(0≤θ<π),铺设三条分光缆的总费用为w(元). ①求w关于θ的函数表达式;
②求w的最小值及此时tanθ的值.
【答案】
(1)解:以点O位坐标原点,OA为x轴建立直角坐标系,则A(10,0),B(20,0),C(﹣5,5),
∴AC= =5 ;
(2)解:①当直线l的斜率存在时,设l:y=kx,k=tanθ,
则w=m[ + + ]=m ;
直线l的斜率不存在时,w=m(100+400+25)=525m,
综上,w=
②直线l的斜率不存在时,w=m(100+400+25)=525m;
当直线l的斜率存在时,w=m
令t=k﹣10,则t=0时,w=525m;
t≠0时,w=525m+m
∵t+ ≤﹣2 ,或t+ ≥2 ,
∴w的最小值为525m+m =(275﹣25 )m,
此时,t=﹣ ,tanθ=k=10﹣ .
【解析】(1)以点O位坐标原点,OA为x轴建立直角坐标系,求出A,C的坐标,即可求居民区A与C的距离;(2)①分类讨论,求出铺设三条分光缆的总费用,即可求w关于θ的函数表达式;②换元,利用基本不等式,可求w的最小值及此时tanθ的值.
科目:高中数学 来源: 题型:
【题目】已知双曲线C:的两个顶点分别为A,B,点P是C上异于A,B的一点,直线PA,PB的倾斜角分别为α,β.若,则C的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.
(I)求实数a,b的值;
(Ⅱ)当a>0时,求曲线y=f(x)在点(﹣2,f(﹣2))处的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C的参数方程 为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是 ,射线 与圆C的交点为O,P,与直线l的交点为Q,求|OP||OQ|的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且 .
(1)若复数z1对应的点M(m,n)在曲线 上运动,求复数z所对应的点P(x,y)的轨迹方程;
(2)将(1)中的轨迹上每一点按向量 方向平移 个单位,得到新的轨迹C,求C的轨迹方程;
(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x , 则 =( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A,B分别为椭圆E: 的左,右顶点,点P(0,﹣2),直线BP交E于点Q, 且△ABP是等腰直角三角形.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x﹣1|,x∈R.
(1)若不等式f(x)≤a的解集为{x|0≤x≤1},求a的值;
(2)若g(x)= 的定义域为R,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆A:(x+1)2+y2=16,圆C过点B(1,0)且与圆A相切,设圆心C的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)过点B作两条互相垂直的直线l1,l2,直线l1与E交于M,N两点,直线l2与圆A交于P,Q两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com