精英家教网 > 高中数学 > 题目详情

【题目】某个体服装店经营某种服装,该服装店每天所获利润y(元)与每天售出这种服装件数x之间的一组数据关系如下表:

x

3

4

5

6

7

8

9

y

66

69

74

81

89

90

91

(1)求利润y与每天售出件数x之间的回归方程 (回归直线的斜率用分数表示).

(2)若该服装店某天销售服装13件,估计可获利润多少元?

【答案】(1);(2)113元.

【解析】

(1)利用最小二乘法求利润y与每天售出件数x之间的回归方程.(2)把x=13代入回归直线方程即得估计这天可获利润大约为113元.

(1)=6,=80.

设回归方程为x+,由最小二乘法可得,所以x+.

(2)当x=13时,×13+=113,故该服装店某天的销售量为13件时,

估计这天可获利润大约为113元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数y=f(x)在∈(m,+∞)上的单调性;

(2),则当x∈[m,m+1]时,函数y= f(x)的图象是否总在函数图象上方?请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对高三年级的学生进行体检,现将高三男生体重(单位:kg)的数据进行整理后分为五组,并绘制出频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65 kg属于偏胖,低于55 kg属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该校高三年级男生的总数和体重正常的频率分别为(  )

A. 1000,0.50 B. 800,0.50

C. 800,0.60 D. 1000,0.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为)千元.设该容器的建造费用为千元.

1)写出关于的函数表达式,并求该函数的定义域;

2)求该容器的建造费用最小时的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数f(x)=lg(ax2﹣x+ )的值域为R;命题q:3x﹣9x<a对一切实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是(
A.x∈R,2x>x2
B.若a>b,c>d,则 a﹣c>b﹣d
C.x∈R,ex<0
D.ac2<bc2是a<b的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出两个命题:
命题甲:关于x的不等式x2+(a﹣1)x+a2≤0的解集为
命题乙:函数y=(2a2﹣a)x为增函数.
(1)甲、乙至少有一个是真命题;
(2)甲、乙有且只有一个是真命题;
分别求出符合(1)(2)的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次试验中,两个试验数据x,y的统计结果如下面的表格1所示.

x

1

2

3

4

5

y

2

3

4

4

5

表格1

(1)在给出的坐标系中画出数据x,y的散点图.

(2)补全表格2,根据表格2中的数据和公式求下列问题.

①求出y关于x的回归直线方程中的.

②估计当x=10时,的值是多少?

表格2

序号

x

y

x2

xy

1

1

2

1

2

2

2

3

4

6

3

3

4

9

12

4

4

4

16

16

5

5

5

25

25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点P(4,0),且在y轴上截得的弦MN的长为8.

(1)求动圆圆心C的轨迹方程;

(2)过点(2,0)的直线l与动圆圆心C的轨迹交于A,B两点,求证:是一个定值.

查看答案和解析>>

同步练习册答案