精英家教网 > 高中数学 > 题目详情

【题目】给定数列,若满足),对于任意的,都有,则称数列为“指数型数列”.

1)已知数列的通项公式为,试判断数列是不是“指数型数列”;

2)已知数列满足,证明数列为等比数列,并判断数列是否为“指数型数列”,若是给出证明,若不是说明理由;

3)若数列是“指数型数列”,且,证明数列中任意三项都不能构成等差数列.

【答案】(1)是;(2)是,理由详见解析;(3)详见解析.

【解析】

1)利用指数数列的定义,判断即可;

2)利用a1an2anan+1+3an+1nN*),说明数列{1}是等比数列,然后证明数列{1}为“指数型数列”;

3)利用反证法,结合n为偶数以及奇数进行证明即可.

解:(1)数列,所以数列是“指数型数列”

2)数列是“指数型数列”

所以是等比数列,

所以数列是“指数型数列”

3)若数列是“指数型数列”,由定义得:

假设数列中存在三项成等差数列,不妨设

,得:

整理得:(*)

a为偶数时,右边为偶数,为奇数,则左边为奇数,(*)不成立;

a为奇数时,右边为偶数,为奇数,则左边为奇数,(*)不成立;

所以,对任意的,(*)式不成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )

A. 是偶数?,? B. 是奇数?,?

C. 是偶数?, ? D. 是奇数?,?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若的值域为,求的值;

(Ⅱ)巳,是否存在这祥的实数,使函数在区间内有且只有一个零点.若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长均为2,点分别在棱上移动,且.

1)若,求异面直线所成角的余弦值;

2)若二面角的大小为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,.

(1)证明:平面

(2)若的中点,是棱上一点,且平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数).

1)若,求函数在区间上的最大值;

2)若,关于的方程有且仅有一个根, 求实数的取值范围;

3)若对任意,不等式均成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,为等边三角形,平面平面.

(1)证明:平面平面

(2)若为线段的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}中,a4=10,且a3a6a10成等比数列.

1)求{an}的通项公式;

2)设bn=,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,在过滤过程中,污染物的数量p(单位:毫克/升)不断减少,已知p与时间t(单位:小时)满足p(t)=,其中p0t=0时的污染物数量.又测得当t∈[0,30]时,污染物数量的变化率是-10ln 2,则p(60)=(  )

A.150毫克/升B.300毫克/升

C.150ln 2毫克/升D.300ln 2毫克/升

查看答案和解析>>

同步练习册答案