【题目】已知函数.
(1)若,讨论的单调性;
(2)若,且对于函数的图象上两点, ,存在,使得函数的图象在处的切线.求证;.
【答案】(1)见解析(2)见证明
【解析】
(1)对函数求导,分别讨论,以及,即可得出结果;
(2)根据题意,由导数几何意义得到,将证明转化为证明即可,再令,设 ,用导数方法判断出的单调性,进而可得出结论成立.
(1)解:易得,函数的定义域为,
,
令,得或.
①当时,时,,函数单调递减;
时,,函数单调递增.
此时,的减区间为,增区间为.
②当时,时,,函数单调递减;
或时,,函数单调递增.
此时,的减区间为,增区间为,.
③当时,时,,函数单调递增;
此时,的减区间为.
综上,当时,的减区间为,增区间为:
当时,的减区间为,增区间为.;
当时,增区间为.
(2)证明:由题意及导数的几何意义,得
由(1)中得.
易知,导函数 在上为增函数,
所以,要证,只要证,
即,即证.
因为,不妨令,则 .
所以 ,
所以在上为增函数,
所以,即,
所以,即,
即.
故有(得证).
科目:高中数学 来源: 题型:
【题目】已知是圆锥的高,是圆锥底面的直径,是底面圆周上一点,是的中点,平面和平面将圆锥截去部分后的几何体如图所示.
(1)求证:平面平面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱柱中,侧棱底面,平面,,,,,为棱的中点.
(1)证明:;
(2)求二面角的平面角的正弦值;
(3)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1元,2.5元,3元,3.5元,共4份,供甲、乙等4人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于6元的概率是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com