精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,已知四边形是菱形,交于点,且.

(1)连接,证明:直线平面.

(2)求平面和平面所成的角(锐角)的余弦值.

【答案】(1)见解析(2)

【解析】

(1)要证平面,转证即可;

(2)为坐标原点,所在直线分别为轴建立如图空间直角坐标系,求出平面和平面的法向量,代入公式计算即可.

(1)因为平行四边形是菱形,所以,且的中点.

又因为,所以.又因为为公共边,所以,所以,故,从而两两垂直.

所以平面.

(2)由(1)可知,以为坐标原点,所在直线分别为轴建立如图空间直角坐标系

因为两两垂直,所以平面

所以是平面的一个法向量;

是平面的一个法向量,则,即

,得,所以

所以

所以平面和平面所成的角(锐角)的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,过点的直线与椭圆相交与两点,且.

(1)求椭圆的离心率;

(2)求直线的斜率;

(3)设点与点关于坐标原点对称,直线上有一点的外接圆上,且,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解关于的不等式

(2)若对任意,都存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三个人该课程考核都合格的概率(结果保留三位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的定义域;

2)判断的奇偶性;

3)求使x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数mR

1)讨论fx)的单调性;

2)若m∈(-10),证明:对任意的x1x2[11-m]4fx1+x25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{}的前项和为Sn,且Sn=n(n+1)(n∈N*).

(1)若数列满足:,求数列的通项公式;

(2)令,求数列{}的前n项和Tn.

(3) ,(n为正整数),问是否存在非零整数,使得对任意正整数n,都有若存在,求的值,若不存在,说明理由。

查看答案和解析>>

同步练习册答案