11£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬AMÊÇBC±ß³¤µÄÖÐÏߣ¬GÊÇAMÉϵĵ㣬ÇÒ$\overrightarrow{AG}$=2$\overrightarrow{GM}$£®
£¨1£©Èô¡÷ABCÈýÄÚ½ÇA£¬B£¬CÂú×ãsinA£ºsinB£ºsinC=$\sqrt{3}$£º1£º2£¬ÇósinCµÄÖµ£»
£¨2£©Èôb2+c2+bc=a2£¬S¡÷ABC=3$\sqrt{3}$£¬µ±AGÈ¡µ½×îСֵʱ£¬ÇóbµÄÖµ£®

·ÖÎö £¨1£©²»·ÁÉèa=$\sqrt{3}$£¬Ôòb=1£¬c=2£¬ÀûÓÃÓàÏÒ¶¨ÀíÇóµÃcosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=0£¬¿ÉµÃsinCµÄÖµ£®
£¨2£©ÓÉÌõ¼þÀûÓÃÓàÏÒ¶¨ÀíÇóµÃAµÄÖµ£¬ÓÉS¡÷ABC=3$\sqrt{3}$ÇóµÃbc=12£¬£®¸ù¾ÝGΪ¡÷ABCµÄÖØÐÄ£¬ÔÙ½áºÏAMΪBC±ßÉϵÄÖÐÏߣ¬ÀûÓÃÏòÁ¿ÒÔ¼°ÓàÏÒ¶¨Àí¡¢»ù±¾²»µÈʽÇóµÃAMµÄ×îСֵ£¬ÓÉ´ËÇóµÃAGµÄ×îСֵÒÔ¼°´ËʱbµÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÀûÓÃÕýÏÒ¶¨Àí¿ÉµÃ£¬Èý±ßÖ®±ÈΪa£ºb£ºc=$\sqrt{3}$£º1£º2£¬
²»·ÁÉèa=$\sqrt{3}$£¬Ôòb=1£¬c=2£¬¹ÊÓÐcosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=0£¬¿ÉµÃC=$\frac{¦Ð}{2}$£¬¹ÊsinC=1£®
£¨2£©Èôc2+c2+bc=a2£¬¡àcosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=-$\frac{1}{2}$£¬¡àA=$\frac{2¦Ð}{3}$£®
¸ù¾ÝAMÊÇBC±ß³¤µÄÖÐÏߣ¬GÊÇAMÉϵĵ㣬ÇÒ$\overrightarrow{AG}$=2$\overrightarrow{GM}$£¬¿ÉµÃGΪ¡÷ABCµÄÖØÐÄ£®
S¡÷ABC=3$\sqrt{3}$=$\frac{1}{2}$bc•sinA=$\frac{\sqrt{3}}{4}$bc£¬¡àbc=12£¬
¡à${£¨2\overrightarrow{AM}£©}^{2}$=${£¨\overrightarrow{AB}+\overrightarrow{AC}£©}^{2}$=c2+b2-2bc•cosA¡Ý2bc+bc=3bc=36£¬
¡àAM¡Ý3£¬µ±ÇÒ½öµ±b=c=2$\sqrt{3}$ʱ£¬µÈºÅ³ÉÁ¢£®
¼´AMµÃ×îСֵΪ$\sqrt{3}$£¬AGµÄ×îСֵΪ$\frac{2}{3}$AM=2£¬´Ëʱb=2$\sqrt{3}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÕýÏÒ¶¨Àí¡¢ÓàÏÒ¶¨ÀíµÄÓ¦Ó㬻ù±¾²»µÈʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Éè¶þÔªÒ»´Î·½³Ì3x2+2xy-y2+7x-5y+k=0±íʾÁ½ÌõÖ±Ïߣ¬ÇókµÄÖµÒÔ¼°Á½ÌõÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ãSn+an=2£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÇóÂú×ã²»µÈʽ${a_1}+{a_2}+¡­+{a_n}£¾\frac{63}{32}$µÄnµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ò»Ó洬ͣ²´Ôھຣ°¶9km´¦£¬¼Ù¶¨º£°¶ÏßÊÇÖ±Ïߣ¬½ñÅÉÈË´Ó´¬ÉÏËÍÐŵ½¾à´¬3$\sqrt{34}$km´¦µÄº£°¶ÓæÕ¾£¬Èç¹ûËÍÐÅÈ˲½ÐÐËÙ¶ÈΪ5km/h£¬´¬ËÙΪ4km/h£¬ÎÊÓ¦Ôںδ¦µÇ°¶ÔÙ×ߣ¬²Å¿ÉʹµÖ´ïÓæÕ¾µÄʱ¼ä×î¶Ì£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬µ×ÃæΪֱ½ÇÈý½Ç¡ÏACB=90¡ã£¬AC=$\sqrt{2}$£¬BC=CC1=1£¬PÊÇBC1ÉÏÒ»¶¯µã£¬ÔòA1P+PCµÄ×îСֵÊÇ$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2+bx+c£¨b£¬c¡ÊR£©£®
£¨I£©Èôf£¨-1£©=f£¨2£©£¬ÇÒº¯Êýy=f£¨x£©-xµÄÖµÓòΪ[0£¬+¡Þ£©£¬Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Èôc£¼0£¬ÇÒº¯Êýf£¨x£©ÔÚ[-1£¬1]ÉÏÓÐÁ½¸öÁãµã£¬Çó2b+cµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ËıßÐÎABCDΪ¾ØÐΣ¬AD¡ÍƽÃæABE£¬AE=EB=BC=2£¬FΪCEÉϵĵ㣬ÇÒBF¡ÍƽÃæACE£®
£¨1£©ÇóÖ¤£ºAE¡ÍBE£»
£¨2£©ÉèMΪABÖе㣬ÇóÖ¤£ºMF¡ÎƽÃæDAE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Çãб½ÇΪ45¡ãµÄÖ±Ïß½»Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©ÓÚP¡¢Q£¬ÇÒPQÖеãΪM£¨1£¬3£©£¬A¡¢F·Ö±ðΪÓÒ¶¥µã¡¢ÓÒ½¹µã£¬Èô|$\overrightarrow{FP}$|•|$\overrightarrow{FQ}$|=17£®
£¨1£©ÇóË«ÇúÏßµÄÀëÐÄÂÊ£»
£¨2£©ÊÔÖ¤£º¹ýA¡¢P¡¢QÈýµãµÄÔ²ÓëxÖáÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É輯ºÏU={0£¬1£¬2£¬3£¬4£¬5}£¬¼¯ºÏA={1£¬2}£¬B={2£¬4}Ôò∁U£¨A¡ÈB£©=£¨¡¡¡¡£©
A£®{1£¬2£¬4}B£®{0£¬3£¬5}C£®{0£¬1£¬3£¬4£¬5}D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸