精英家教网 > 高中数学 > 题目详情
9.已知二次函数f(x)=x2+4x,三次函数g(x)=$\frac{1}{3}$bx3-bx2-3bx+1.
(1)探究;是否存在实数b,使得函数g(x)的图象经过四个象限,若存在,求实数b的取值范围;若不存在,请说明理由.
(2)若m,n是方程lnx-ax=0的两个不同的根,记函数h(x)=f(x)+g(x),当函数h(x)的图象在(0,h(0))处的切线平行于直线y=x+2时,求证:h(mn)>h(e2)(e为自然对数底数)

分析 (1)若存在实数b,使得函数g(x)的图象经过四个象限,则函数g(x)的两个极值异号,进而求出实数b的取值范围;
(2)根据h(x)的图象在(0,h(0))处的切线平行于直线y=x+2,求出b值,分析函数的单调性,可得结论.

解答 解:(1)∵三次函数g(x)=$\frac{1}{3}$bx3-bx2-3bx+1.
∴g′(x)=bx2-2bx-3b.
令g′(x)=0,则x=-1,或x=3,
若存在实数b,使得函数g(x)的图象经过四个象限,
则g(-1)•g(3)<0,即($\frac{5}{3}$b+1)(-9b+1)<0,
解得:b∈(-∞,-$\frac{3}{5}$)∪($\frac{1}{9}$,+∞);
证明:(2)∵h(x)=f(x)+g(x)=$\frac{1}{3}$bx3+(1-b)x2+(4-3b)x+1.
∴h′(x)=bx2+(2-2b)x+4-3b.
∵h(x)的图象在(0,h(0))处的切线平行于直线y=x+2,
∴h′(0)=4-3b=1,
解得:b=1,
此时h(x)=$\frac{1}{3}$x3+x+1.
h′(x)=x2+1≥0恒成立,
h(x)在R为增函数,
要证h(mn)>h(e2),只需证mn>e2
设m>n>0,k(x)=lnx-ax,
∵k(m)=0,k(n)=0,
∴lnm-am=0,lnn-an=0,
∴lnm-lnn=a(m-n),lnm+lnn=a(m+n)
原不等式mn>e2等价于lnm+lnn>2?a(m+n)>2,
?$\frac{lnm-lnn}{m-n}$>$\frac{2}{m+n}$?ln$\frac{m}{n}$>$\frac{2(m-n)}{m+n}$,
令$\frac{m}{n}$=t,则t>1,
∴ln$\frac{m}{n}$>$\frac{2(m-n)}{m+n}$?lnt>$\frac{2(t-1)}{t+1}$,
设l(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),
∴l′(t)=$\frac{(t-1)^{2}}{t(t+1)^{2}}$>0,
∴函数l(t)在(1,+∞)是递增,
∴l(t)>l(1)=0即不等式lnt>$\frac{2(t-1)}{t+1}$成立,
故不等式mn>e2成立.
即有h(mn)>h(e2).

点评 本题主要考查了导数在求切线斜率和函数单调性中的应用,考查构造函数和运用单调性,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.将x1,x2,…,xn中的最小数记为min{x1,x2…,xn},最大数记为max{x1,x2…,xn},则max{min{x2-4x+4,2x-1,-x+8}}(x∈R)的值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点F为椭圆$\frac{{x}^{2}}{2}$+y2=1的左焦点,过点F的直线l1 与椭圆交于P、Q两点,过F且与l1垂直,直线l2交椭圆于M,N两点,求四边形PMQN面积的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα+cosα=-$\frac{1}{3}$,其中0<α<π,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系中,有一条长度为2的线段AB,点A在y轴上运动,点B在x轴上运动,且保持线段长度不变,线段AB上的点P分线段AB所成的比为1:2,求点P满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.通过计算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1.
将以上各等式两边分别相加,得
(n+1)3-13=3(12+22+…+n2)+3(1+2+3+…+n)+n;
即12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).
类比上述求法,请你求出13+23+33+…+n3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.2014年小明以优异的成绩研究生毕业,并获得一份待遇优厚的工作.从2015年起,每年元月在银行存入5万元,打算连续存十年,银行年利率为r(按复利计算),到2025年元月取出的本利之和是$\frac{5(1{+r)}^{11}-5-5r}{r}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有两个函数f(x)=asin(kx+$\frac{π}{3}$),g(x)=bcos(2kx-$\frac{π}{3}$)(k>0),它们的周期之和为$\frac{3π}{2}$,且f($\frac{π}{2}$)=g($\frac{π}{2}$),f($\frac{π}{4}$)=-$\sqrt{3}$•g($\frac{π}{4}$)+1,求k,a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义域为R的函数g(x),当x∈(-1,1]时,g(x)=$\left\{\begin{array}{l}{\frac{1}{x+1}-1,-1<x≤0}\\{{x}^{2}-3x+2,0<x≤1}\end{array}\right.$,且g(x+2)=g(x)对?x∈R恒成立,若函数f(x)=g(x)-m(x+1)在区间[-1,5]内有6个零点,则实数m的取值范围是(  )
A.($\frac{2}{5}$,$\frac{2}{3}$)B.(-∞,$\frac{2}{5}$]∪($\frac{2}{3}$,+∞)C.[$\frac{2}{5}$,$\frac{2}{3}$)D.[$\frac{2}{5}$,$\frac{2}{3}$]

查看答案和解析>>

同步练习册答案