精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面是边长为4的正方形,侧面为正三角形且二面角

(Ⅰ)设侧面的交线为,求证:

(Ⅱ)设底边与侧面所成角的为,求的值.

【答案】(Ⅰ)证明见解析;(Ⅱ).

【解析】试题分析:(1)通过得到侧面,再通过线面平行性质定理可得结论;(2)取中点中点,连,根据二面角定义可得,以为原点,轴,轴,如图建立右手空间直角坐标系,求出平面的法向量,根据 可得结果.

试题解析:(1)因为,所以侧面

又因为侧面的交线为,所以

(2)

中点中点,连

所以是侧面与底面成二面角的平面角.

从而

,则底面

因为

所以

为原点,轴,轴,如图建立右手空间直角坐标系.

是平面的法向量,

.取

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题14分)

如图在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD平面ABCDPAPDPA=PDEF分别为ADPB的中点.

(Ⅰ)求证:PEBC

(Ⅱ)求证:平面PAB平面PCD

(Ⅲ)求证:EF平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足以下三个条件:

①对任意实数,都有

在区间上为增函数.

1)判断函数的奇偶性,并加以证明;

2)求证:

3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车“定速巡航”技术是用于控制汽车的定速行驶,当汽车被设定为定速巡航状态时,电脑根据道路状况和汽车的行驶阻力自动控制供油量,使汽车始终保持在所设定的车速行驶,而无需司机操纵油门,从而减轻疲劳,促进安全,节省燃料.某汽车公司为测量某型号汽车定速巡航状态下的油耗情况,选择一段长度为240km的平坦高速路段进行测试.经多次测试得到一辆汽车每小时耗油量F(单位:L)与速度v(单位:km/h)()的下列数据:

v

0

40

60

80

120

F

0

10

20

为了描述汽车每小时耗油量与速度的关系,现有以下三种函数模型供选择:

.

1)请选出你认为最符合实际的函数模型,并求出相应的函数解析式.

2)这辆车在该测试路段上以什么速度行驶才能使总耗油量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,

①若曲线与直线相切,求的值;

②若曲线与直线有公共点,求的取值范围.

(2)当时,不等式对于任意正实数恒成立,当取得最大值时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的正整数,总存在正整数,使得数列的前项和,则称回归数列

项和为的数列是否是回归数列?并请说明理由.通项公式为的数列是否是回归数列?并请说明理由;

)设是等差数列,首项,公差,若回归数列,求的值.

)是否对任意的等差数列,总存在两个回归数列,使得成立,请给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:

x

4

5

7

8

y

2

3

5

6

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为的雾霾天数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆心在原点,半径为R的圆交x轴正半轴于点APQ是圆上的两个动点,它们同时从点A出发沿圆周做匀速运动,点P沿逆时针方向每秒转,点Q沿顺时针方向每秒转,试求PQ出发后第五次相遇时各自转过的弧度数及各自走过的弧长.

查看答案和解析>>

同步练习册答案