精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆的短轴端点和焦点所组成的四边形周长等于8。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求直线的方程。
解:(Ⅰ)由题意设椭圆的标准方程为 
∴椭圆的标准方程为 
(Ⅱ)当直线l与x轴垂直时,A,B分别为椭圆短轴的两端点,显然以A,B为直径的圆不过椭圆C的右顶点,故直线l与x轴不垂直 
设直线l的方程为 
则由 
 
 
因为以AB为直径的圆过椭圆C的右顶点D(2,0),
 
 
解得 
当k=1时,直线l过椭圆右顶点(2,0),不合题意,
所以k=7,故直线l的方程是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆两焦点为  ,P在椭圆上,若 △的面积的最大值为12,则椭圆方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的下焦点为、上焦点为,其离心 率。过焦点F2且与轴不垂直的直线l交椭圆于AB两点。
(1)求实数的值;  
(2)求DABOO为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线与椭圆交于A、B两点,点F为抛物线
的焦点,若∠AFB=,则椭圆的离心率为                          
A、        B、        C、        D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆上的一点,是焦点,且,则的面积为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆()的左焦点轴的垂线交椭圆于点为右焦点,若,则椭圆的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆上的点,F1、F2分别是椭圆的左、右焦点,若,则的面积为( )
A.3B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)为椭圆左顶点,为椭圆上异于的任意两点,若,求证:直线过定点并求出定点坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为,点在椭圆上的一点,且的等差中项,则该椭圆的方程为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案