精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD与ABEF均为矩形,BC=BE=2AB,二面角E﹣AB﹣C的大小为 .现将△ACD绕着AC旋转一周,则在旋转过程中,(

A.不存在某个位置,使得直线AD与BE所成的角为
B.存在某个位置,使得直线AD与BE所成的角为
C.不存在某个位置,使得直线AD与平面ABEF所成的角为
D.存在某个位置,使得直线AD与平面ABEF所成的角为

【答案】B
【解析】解:在旋转过程中,AB⊥平面EBC,由于二面角E﹣AB﹣C的大小为 ,四边形ABCD与ABEF均为矩形,
∴∠EBC=
∴当AD在平面EBC中的射影与BE垂直时,直线AD与BE所成的角为
∴存在某个位置,使得直线AD与BE所成的角为
故选:B.
【考点精析】本题主要考查了旋转体(圆柱、圆锥、圆台)的相关知识点,需要掌握常见的旋转体有:圆柱、圆锥、圆台、球才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=ln(x+m)﹣mx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设m>1,x1 , x2为函数f(x)的两个零点,求证:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1 , l2分别交C于A,B两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AD=CD=1,BD= ,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(

A.A′C⊥BD
B.∠BA′C=90°
C.CA′与平面A′BD所成的角为30°
D.四面体A′﹣BCD的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单位向量 的夹角为 ,设向量 =x +y ,x,y∈R,若| |=1,则x+2y的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有60m长的钢材,要制作如图所示的窗框:

(1)求窗框面积y与窗框宽x的函数关系;
(2)当窗框宽为多少米时,面积y有最大值?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2 +sinA=
(1)若满足条件的△ABC有且只有一个,求b的取值范围;
(2)当△ABC的周长取最大值时,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正项数列{an}的前n项和为Sn , 且a +2an=4Sn(n∈N*).
(1)求an
(2)设数列{bn}满足:b1=1,bn= (n∈N* , n≥2),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案