精英家教网 > 高中数学 > 题目详情

【题目】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有(

A.12B.24C.36D.48

【答案】C

【解析】

根据排在第三节,则两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.

由题意,排在第三节,则两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,

剩余的3门全排列,安排在剩下的3个位置,有种,

所以六艺课程讲座不同的排课顺序共有种不同的排法.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)讨论的单调性;

(2)若对,不等式恒成立,求的取值范围;

(3)已知当时,函数有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,且∠DAB60°.点E是棱PC的中点,平面ABE与棱PD交于点F

(1)求证:ABEF

(2)若PAPDAD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以为极点,轴的非负半轴为极轴建极坐标系,直线的极坐标方程为

(Ⅰ)求的极坐标方程;

(Ⅱ)射线与圆C的交点为与直线的交点为,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且.

(Ⅰ)求的值;

(Ⅱ)是否存在实数,使得,对任意正整数恒成立?若存在,求出实数的值并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y,z∈(0,+∞),x+y+z=3.

(1)的最小值;

(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程恰有四个不同的实数根,当函数时,实数K的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。

1)如果X=8,求乙组同学植树棵数的平均数和方差

2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率

查看答案和解析>>

同步练习册答案