精英家教网 > 高中数学 > 题目详情

【题目】以下四个命题:
①对立事件一定是互斥事件;
②函数y=x+ 的最小值为2;
③八位二进制数能表示的最大十进制数为256;
④在△ABC中,若a=80,b=150,A=30°,则该三角形有两解.
其中正确命题的个数为( )
A.4
B.3
C.2
D.1

【答案】C
【解析】解:对于①,由互斥事件和对立事件的概念知,对立事件一定是互斥事件,

互斥事件不一定是对立事件,①正确;

对于②,当x>0时,函数y=x+ 的最小值为2,

当x<0时,函数y=x+ 的最大值为﹣2,∴②错误;

对于③,八位二进制数能表示的最大十进制数是

1×20+1×21+1×22+…+1×27= =255,③错误;

对于④,如图所示,△ABC中,a=80,b=150,A=30°,

∴C到AB的距离h=bsinA=75,由h<a<b,

得该三角形有两解,④正确.

综上,正确的命题为①④.

所以答案是:C.

【考点精析】通过灵活运用命题的真假判断与应用,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数 是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c且acosB=4,bsinA=3.
(1)求tanB及边长a的值;
(2)若△ABC的面积S=9,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知2sinA﹣cosB=2sinBcosC,且角B为钝角.
(1)求角C的大小;
(2)若a=2,b2+c2﹣a2= bc,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如何把一条长为m的绳子截成3段,各围成一个正方形,使这3个正方形的面积和最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,MCN是某海湾旅游区的一角,为营造更加优美的旅游环境,旅游区管委会决定建立面积为4 平方千米的三角形主题游戏乐园ABC,并在区域CDE建立水上餐厅.已知∠ACB=120°,∠DCE=30°.
(1)设AC=x,AB=y,用x表示y,并求y的最小值;
(2)设∠ACD=θ(θ为锐角),当AB最小时,用θ表示区域CDE的面积S,并求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1=
(1)证明:数列{a2n }是等比数列;
(2)求a2n及a2n1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +ax,x>1.
(1)若函数f(x)在 处取得极值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有两个不等实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案