精英家教网 > 高中数学 > 题目详情

【题目】某蔬菜批发商经销某种新鲜蔬菜(以下简称蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的蔬菜没有售完,则批发商将没售完的蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.

1)若某天该蔬菜批发商共购入6蔬菜,有4蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?

2)以上述样本数据作为决策的依据.

i)若今年蔬菜上市的100天内,该蔬菜批发商坚持每天购进6蔬菜,试估计该蔬菜批发商经销蔬菜的总盈利值;

ii)若明年该蔬菜批发商每天购进蔬菜的袋数相同,试帮其设计明年的蔬菜的进货方案,使其所获取的平均利润最大.

【答案】1;(2)(i元;(ii)该批发商明年每天购进蔬菜5袋,所获平均利润最大.

【解析】

1)通过列举分别求出“从6人中任选2人”和“至少选中1人是以150元/袋的价格购买”的基本事件个数,通过古典概型公式计算即可;

2)(i)通过频数分布条形图进行估算即可;(ii)分别计算购进蔬菜4袋、5袋、6袋时的每天所获平均利润,比较大小即可.

1)设这6人中花150元/袋的价格购买蔬菜的顾客为

其余4人为.

则从6人中任选2人的基本事件为:,共15.

其中至少选中1人是以150元/袋的价格购买的基本事件有:,共9.

至少选中1人是以150元/袋的价格购买的概率为.

2)(i)该蔬菜批发商经销蔬菜的总盈利值为:(元).

ii)当购进蔬菜4袋时,每天所获平均利润为(元),

当购进蔬菜5袋时,每天所获平均利润为(元)

当购进蔬菜6袋时,每天所获平均利润为(元)

综上,该批发商明年每天购进蔬菜5袋,所获平均利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,点轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于两点,且.

1)求抛物线的方程;

2)直线与抛物线交于两点,若,求点到直线的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】总体由编号为0102...394040个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为(

A.23B.21C.35D.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,侧面为等边三角形,侧棱.

1)求证:平面平面

2)求三棱锥外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3sin2θ)=12,直线l的参数方程为t为参数),直线l与曲线C交于MN两点.

1)若点P的极坐标为(2π),求|PM||PN|的值;

2)求曲线C的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,且,满足条件的点的轨迹为曲线

1)求曲线的方程;

2)是否存在过点的直线,直线与曲线相交于两点,直线轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从秦朝统一全国币制到清朝末年,圆形方孔铜钱(简称孔方兄是我国使用时间长达两千多年的货币.如图1,这是一枚清朝同治年间的铜钱,其边框是由大小不等的两同心圆围成的,内嵌正方形孔的中心与同心圆圆心重合,正方形外部,圆框内部刻有四个字同治重宝.某模具厂计划仿制这样的铜钱作为纪念品,其小圆内部图纸设计如图2所示,小圆直径1厘米,内嵌一个大正方形孔,四周是四个全等的小正方形(边长比孔的边长小),每个正方形有两个顶点在圆周上,另两个顶点在孔边上,四个小正方形内用于刻铜钱上的字.设,五个正方形的面积和为

1)求面积关于的函数表达式,并求的范围;

2)求面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为2EFG分别为的中点,则(

A.直线与直线垂直

B.直线与平面不平行

C.平面截正方体所得的截面面积为

D.C与点G到平面的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若函数的两个极值点恰为函数的两个零点,且的范围是,求实数a的取值范围.

查看答案和解析>>

同步练习册答案