精英家教网 > 高中数学 > 题目详情
15.函数f(x)=$\sqrt{1-x}$+lg(3x+1)的定义域是(  )
A.(-∞,$-\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{3}$)C.($-\frac{1}{3}$,1]D.($-\frac{1}{3}$,+∞)

分析 由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{1-x≥0}\\{3x+1>0}\end{array}\right.$,解得-$\frac{1}{3}$<x≤1.
∴函数f(x)=$\sqrt{1-x}$+lg(3x+1)的定义域是($-\frac{1}{3}$,1].
故选:C.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图是一个组合体的三视图,根据图中数据,可得该几何体的体积是(  )
A.$\frac{38π}{3}$B.$\frac{19π}{3}$C.$\frac{13π}{3}$D.$\frac{11π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow a=(2,-3,5)$与向量$\overrightarrow b=(-4,x,y)$平行,则x=6,y=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{DC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,且则$\overrightarrow{AD}$=(  )
A.$\frac{4}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动点P与两个顶点M(1,0),N(4,0)的距离的比为$\frac{1}{2}$.
(I)求动点P的轨迹方程;
(II)若点A(-2,-2),B(-2,6),C(-4,2),是否存在点P,使得|PA|2+|PB|2+|PC|2=36.若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)-k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令$g(x)=\frac{f(x)}{x}$,若函数F(x)=g(2x)-r2x在x∈[-1,1]上有零点,求实数r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校从8名教师中选派4名教师去4个边远地区支教,每地1人,其中甲和乙不能同去,甲与丙同去或者同不去,则不同的选派方案的种数是(  )
A.240B.360C.540D.600

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某工厂生产甲乙丙三种不同型号的产品,三种产品产量之比为1:3:5,现用分层抽样的方法抽得容量为n的样本进行质量检测,已知抽得乙种型号的产品12件,则n=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,c=2a,B=120°,且△ABC面积为$\frac{\sqrt{3}}{2}$.
(1)求b的值;
(2)求tanA的值.

查看答案和解析>>

同步练习册答案