【题目】如图,在四棱锥中,底面为正方形, 底面, , 为棱中点.
(1)求证: 平面;
(2)若为中点, ,试确定的值,使二面角的余弦值为.
【答案】(I) 见解析; (II) .
【解析】试题分析:(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的寻找与论证,往往从两个方面进行,一是利用条件中的线面垂直性质定理得到线线垂直,二是利用平几知识,如等腰三角形性质得到线线垂直,(2)研究二面角的大小,一般方法为利用空间向量数量积,即先根据条件建立恰当的空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求出两法向量夹角,再根据二面角与两法向量夹角关系列方程,解出参数.
试题解析:(I)证明:∵底面, 底面,∴,
又∵底面为矩形,∴, , 平面, 平面,
∴平面,又平面,∴, , 为中点,∴, , 平面, 平面,∴平面.
(II) 以为原点,以为轴正方向,建立空间直角坐标系,令,
则, , , , , , , , ,
设平面的法向量, ,即,
设平面的法向量, ,
即,
,解得.
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次考试中,语文成绩服从正态分布,数学成绩的频率分布直方图如下:
(Ⅰ)如果成绩大于135的为特别优秀,随机抽取的500名学生在本次考试中语文、数学成绩特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中至少有一科成绩特别优秀的同学中随机抽取3人,设3人中两科都特别优秀的有人,求的分布列和数学期望;
(Ⅲ)根据以上数据,是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.
(附公及表)
①若,则, ;
②, ;
③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线l的方程;
(2)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素,的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
当产品中的微量元素,满足且时,该产品为优等品
(1)若甲厂生产的产品共98件,用上述样本数据估计乙厂生产的优等品的数量;
(2)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数满足.
(1)求函数的解析式;
(2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;
(3)若函数,是否存在实数,使函数在上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com