精英家教网 > 高中数学 > 题目详情
7.如图所示,线段AB时抛物线的焦点弦,F为抛物线焦点,若A,B在其准线上的射影分别为A1,B1,则∠A1FB1等于(  )
A.45°B.60°C.90°D.120°

分析 由抛物线的定义及内错角相等,可得∠AFA1=∠A1FK,同理可证∠BFB1=∠B1FK,由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,可得答案.

解答 解:如图:设准线与x轴的交点为K,
∵A、B在抛物线的准线上的射影为A1、B1
由抛物线的定义可得,AA1=AF,
∴∠AA1F=∠AFA1
又由内错角相等得∠AA1F=∠A1FK,
∴∠AFA1=∠A1FK.
同理可证∠BFB1=∠B1 FK.   
由∠AFA1+∠A1FK+∠BFB1+∠B1FK=180°,
∴∠A1FK+∠B1FK=∠A1FB1=90°,
故选:C.

点评 本题考查抛物线的定义、以及简单性质的应用,推出∠AFA1=∠A1FK是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x3+x-1在下列哪个区间内有零点?(  )
A.(-1,0)B.(1,2)C.(0,1)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{x-a}{lnx}$的图象总在函数F(x)=$\sqrt{x}$的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:y=kx+1,椭圆C:x2+$\frac{{y}^{2}}{4}$=1.
(1)求证:直线1与椭圆C有两个交点;
(2)若k=2,求直线l被椭圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.试在14和224之间插入3个数,使5个数成等比数列,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x($\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$),则方程f(x-1)=f(x2-2x+1)的所有实根构成的集合的元素个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明.对于任意两个向量$\overrightarrow{a}$,$\overrightarrow{b}$都有||$\overrightarrow{a}$|-|$\overrightarrow{b}$||≤|$\overrightarrow{a}+\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=($\sqrt{3},\sqrt{5}$),|$\overrightarrow{b}$|=2,求满足下列条件的$\overrightarrow{b}$的坐标.
(1)$\overrightarrow{a}$⊥$\overrightarrow{b}$(2)$\overrightarrow{a}$∥$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知α,β是关于x的方程x2+2(cosθ+1)x+cos2θ=0的两个根,是否存在θ∈[-$\frac{π}{4}$,$\frac{π}{4}$],使|α-β|≤2$\sqrt{2}$,若存在,试求角θ的集合;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案