精英家教网 > 高中数学 > 题目详情

【题目】交强险是车主须为机动车购买的险种.若普通座以下私家车投保交强险第一年的费用(基本保费)是元,在下一年续保时,实行费率浮动制,其保费与上一年度车辆发生道路交通事故情况相联系,具体浮动情况如下表:

类型

浮动因素

浮动比率

上一年度未发生有责任的道路交通事故

下浮

上两年度未发生有责任的道路交通事故

下浮

上三年度未发生有责任的道路交通事故

下浮

上一年度发生一次有责任不涉及死亡的道路交通事故

上一年度发生两次及以上有责任不涉及死亡的道路交通事故

上浮

上三年度发生有责任涉及死亡的道路交通事故

上浮

据统计,某地使用某一品牌座以下的车大约有辆,随机抽取了辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:

类型

数量

以这辆该品牌汽车的投保类型的频率视为概率,按照我国《机动车交通事故责任保险条例》汽车交强险价格为元.

(1)求得知,并估计该地本年度使用这一品牌座以下汽车交强险费大于元的辆数;

(2)试估计该地使用该品牌汽车的一续保人本年度的保费不超过元的概率.

【答案】(1)250(2)0.95

【解析】

(1)根据样本容量可求得为,并且能够得出保费需要上浮的事故车辆为5辆,样本容量为100,根据相关公式可求得该地本年度这一品牌座以下事故车辆数为辆,得到结果;

(2)从表中可以得出该地使用该品牌汽车的一续保人本年度的保费不超过元对应的事件为,利用公式求得结果,也可以用间接法求解.

(1)易得,估计该地本年度这一品牌座以下事故车辆数为.

(2)法1:保费不超过元的车型为,所求概率为.

法2:保费超过元的车型为,概率为,因此保费不超过元的车概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高考改革是教育体制改革中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目语文、数学、外语,“”指考生根据本人兴趣特长和拟报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择门作为选考科目,其中语、数、外三门课各占分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.假定省规定:选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、分、分、分.为了让学生们体验“赋分制”计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选三科计算成绩),已知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如下图所示,小明同学在这次考试中物理分,化学多分.

(1)求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.

1)若取出的红球的个数不少于白球的个数,则有多少不同的取法?

2)取出一个红球记2分,取出一个白球记1分,若取出4个球所得总分不少于5分,则有多少种不同取法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱柱是正四棱柱的充要条件是(

A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直底面

C.底面是正方形,相邻两个侧面是矩形D.每个侧面都是全等的矩形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】艾滋病是一种危害性极大的传染病,由感染艾滋病病毒病毒引起,它把人体免疫系统中最重要的CD4T淋巴细胞作为主要攻击目标,使人体丧失免疫功能下表是近八年来我国艾滋病病毒感染人数统计表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代码x

1

2

3

4

5

6

7

8

感染者人数单位:万人

85

请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;

请用相关系数说明:能用线性回归模型拟合yx的关系;

建立y关于x的回归方程系数精确到,预测2019年我国艾滋病病毒感染人数.

参考数据:

参考公式:相关系数

回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求曲线的直角坐标方程;

(2)设过点且倾斜角为的直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上两点所成的曲线可以是圆、椭圆或双曲线,给出以下四个结论:①当时,曲线是一个圆;②当时,曲线的离心率为;③当时,曲线的渐近线方程为;④当曲线的焦点坐标分别为时,的范围是.其中正确的结论序号为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD与四边形BDEF均为菱形,,且

求证:平面BDEF

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数恰有三个零点,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案