精英家教网 > 高中数学 > 题目详情
18.无穷等比数列{an}(n∈N*)的前n项的和是Sn,且$\lim_{n→∞}{S_n}=\frac{1}{2}$,则首项a1的取值范围是(0,$\frac{1}{2}$)∪($\frac{1}{2}$,1).

分析 根据所给的前n项和的极限的值,做出首项和公比之间的关系,根据公比的范围,得到首项的范围,解不等式即可.

解答 解:设无穷等比数列{an}的公比为q,|q|<1且q≠0,
由$\lim_{n→∞}{S_n}=\frac{1}{2}$,
又无穷等比数列的求和公式$\underset{lim}{n→∞}$Sn=$\frac{{a}_{1}}{1-q}$,
即q=1-2a1
即有|1-2a1|<1且|1-2a1|≠0,
解得a1∈(0,$\frac{1}{2}$)∪($\frac{1}{2}$,1).
故答案为:(0,$\frac{1}{2}$)∪($\frac{1}{2}$,1).

点评 本题考查了无穷等比数列的前n项和公式,极限的运算法则及其不等式的解法问题,本题解题的关键是运用无穷等比数列的求和公式来解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且$6{S_n}=a_n^2+3{a_n}+2$(n∈N*).
(1)求{an}的通项公式;
(2)设数列{bn}满足${b_n}=\left\{{\begin{array}{l}{{a_n},n为偶数}\\{{2^{a_n}},n为奇数}\end{array}}\right.$,Tn为数列{bn}的前n项和,求Tn
(3)设${C_n}=\frac{{{b_{n+1}}}}{b_n},(n为正整数)$,问是否存在正整数N,使得当任意正整数n>N时恒有Cn>2015成立?若存在,请求出正整数N的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠-1,则x2-3x+2≠0”
B.若p∧q为假命题,则p、q均为假命题
C.“x=1”是“x2-3x+2=0的充分不必要条件”
D.对于命题p:?x0∈R使得x02+x0+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有3名男生,2名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边的位置,共72种排法;
(2)全体排成一行,其中男生必须排在一起,共36种排法;
(3)全体排成一行,男生不能排在一起,共12种排法;
(4)全体排成一行,其中甲、乙、丙三人从左到右的顺序不变,共20种排法;
(5)全体排成一行,其中甲不再最左边,乙不在最右边,共78种排法;
(6)若再加入一名女生,全体排成一行,男女各不相邻,共144种排法;
(7)排成前后两排,前排3人,后排2人,共120种排法;
(8)全体排成一行,甲、乙两人中间必须有1人,共36种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x),对任意的x∈[0,+∞),恒有f(x+2)=f(x)成立,且当x∈[0,2)时,f(x)=2-x.则方程$f(x)=\frac{1}{n}x$在区间[0,2n)(其中n∈N*)上所有根的和为n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$f(x)=\left\{\begin{array}{l}{x^2}-4x+3,\;\;x≤0\\-{x^2}-2x+3,\;\;x>0\end{array}\right.$,当x∈[a,a+1]时不等式f(x+a)≥f(2a-x)恒成立,则实数a的最大值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=sin(ωx+φ)(其中ω>0)在(0,$\frac{π}{3}$)上单调递增,且f($\frac{π}{6}$)+f($\frac{π}{3}$)=0,f(0)=-1,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=x,$\overrightarrow{AC}$•$\overrightarrow{BC}$=-1,O为△ABC所在平面内的一点,2$\overrightarrow{BO}$=(1-λ)$\overrightarrow{BC}$-2λ$\overrightarrow{AB}$(0≤λ≤1).
(1)指出点O所在的位置,并给予证明;
(2)设f(λ)=$\overrightarrow{OA}$•($\overrightarrow{OB}$+$\overrightarrow{OC}$),求函数f(λ)的最小值g(x),并求出相应的λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:f(x)=2$\sqrt{3}$cos2x+2sinxcosx-$\sqrt{3}$.
求:(1)f(x)的最小正周期;
(2)f(x)的单调递增区间;
(3)若f($\frac{α}{2}$-$\frac{π}{6}$)-f($\frac{α}{2}$+$\frac{π}{12}$)=$\sqrt{6}$,且α∈($\frac{π}{2}$,π),求α的值.

查看答案和解析>>

同步练习册答案