精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,四边形为梯形,且,平面平面.

1)证明:平面平面

2)若,求二面角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)根据面面垂直的性质定理可知,平面,又,可得平面,再根据面面垂直的判定定理即可证出;

2)作,过,即可知平面,建立以为坐标原点,所在直线分别为轴,轴,轴的空间直角坐标系,分别求出平面和平面的一个法向量,根据向量法即可求出.

1)证明:∵平面平面,平面平面

在平面内,∴平面,又∵

平面,而在平面内,

∴平面平面

2)作,则平面,过

如图,以为坐标原点,所在直线分别为轴,轴,轴,

建立如图所示的空间直角坐标系:

,则

设平面的一个法向量为,则

则可取

设平面的一个法向量为,则

则可取

,∴.

故二面角的平面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20.

1)根据题意,请将下面的列联表填写完整;

选择“西游传说”

选择“千古蝶恋”

总计

成年人

未成年人

总计

2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.

附参考公式与表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30)的快递件数记录结果中随机抽取10天的数据,整理如下:

甲公司员工410390330360320400330340370350

乙公司员工360420370360420340440370360420

每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(350)的部分每件0.6元,超出350件的部分每件0.9.

1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;

2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;

3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当求函数的单调区间和极值;

2)若存在满足,证明:成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).

1)应抽查男生与女生各多少人?

2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:

时间(小时)

[0,1]

(1,2]

(2,3]

(3,4]

(4,5]

(5,6]

频率

0.05

0.20

0.30

0.25

0.15

0.05

若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为该校学生的每周平均体育锻炼时间与性别有关

男生

女生

总计

每周平均体育锻炼时间不超过2小时

每周平均体育锻炼时间超过2小时

总计

附:K2.

PK2k0

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20183月份,上海出台了《关于建立完善本市生活垃圾全程分类体系的实施方案》,4月份又出台了《上海市生活垃圾全程分类体系建设行动计划(2018-2020年)》,提出到2020年底,基本实现单位生活垃圾强制分类全覆盖,居民区普遍推行生活垃圾分类制度.为加强社区居民的垃圾分类意识,推动社区垃圾分类正确投放,某社区在健身广场举办了垃圾分类,从我做起生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需要征集一部分垃圾分类志愿者.

1)为调查社区居民喜欢担任垃圾分类志愿者是否与性别有关,现随机选取了一部分社区居民进行调查,其中被调查的男性居民和女性居民人数相同,男性居民中不喜欢担任垃圾分类志愿者占男性居民的,女性居民中不喜欢担任垃圾分类志愿者占女性居民的,若研究得到在犯错误概率不超过0.010的前提下,认为居民喜欢担任垃圾分类志愿者与性别有关,则被调查的女性居民至少多少人?

0.100

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2)某垃圾站的日垃圾分拣量(千克)与垃圾分类志愿者人数(人)满足回归直线方程,数据统计如下:

志愿者人数(人)

2

3

4

5

6

日垃圾分拣量(千克)

25

30

40

45

已知,根据所给数据求和回归直线方程,附:

3)用(2)中所求的线性回归方程得到与对应的日垃圾分拣量的估计值.当分拣数据与估计值满足时,则将分拣数据称为一个正常数据.现从5个分拣数据中任取3个,记表示取得正常数据的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法自古以来就使用的纪年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸为十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为十二地支.“干支纪年法”是以一个天干和一个地支按上述顺序相配排列起来,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此类推,则2080年是____________.

查看答案和解析>>

同步练习册答案