精英家教网 > 高中数学 > 题目详情
设{an}是由正数组成的等比数列,且a5•a6=9,则log3a1+log3a2+log3a3+…+log3a10的值是
 
考点:数列的求和,对数的运算性质
专题:等差数列与等比数列
分析:依题意知,a1•a10=a2•a9=…=a5•a6=9,利用对数的运算性质可得log3a1+log3a2+log3a3+…+log3a10=log395=10.
解答: 解:∵{an}是由正数组成的等比数列,且a5•a6=9,
∴a1•a10=a2•a9=…=a5•a6=9,
∴log3a1+log3a2+log3a3+…+log3a10=log3(a1a10)5=5log39=10.
故答案为:10.
点评:标题考查数列的求和,着重考查等比数列的性质(下标之和相等的两角之积相等)与对数的运算性质的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b为实数,则“2a>2b”是“lna>lnb”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg
1-x
1+x
的定义域为(-1,1),
(1)求f(
1
2013
)+f(-
1
2013
);
(2)探究函数f(x)的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
3
)x
,x∈[-1,1],函数g(x)=f2(x)-2af(x)+3的最小值为h(a).
(1)求h(a)的表达式.    
(2)是否存在实数m,n同时满足以下条件:①m>n>3; ②当h(a)的定义域为[m,n]时,值域为[n2,m2],若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx2-3x+1的图象上其零点至少有一个在原点右侧,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=mx+2,f(x)=x2-
3x2-4
x2
,若对任意的x1∈[-1,2],总存在x2∈[1,
3
],使得g(x1)>f(x2),则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,点M在正六边形ABCDEF的边BC、CD、DE、EF上变动,若
AM
=x
AB
+y
AF
,其中x,y∈R,则x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数在(1,+∞)上为增函数的是(  )
A、y=-|x-1|
B、y=x+
2
x
C、y=
3x+1
x+1
D、y=x(2-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域是{x|x≠
k
2
,k∈Z,x∈R},且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,当
1
2
<x<1时,f(x)=3x
(1)证明:f(x)为奇函数;
(2)求f(x)在(-1,-
1
2
)
上的表达式;
(3)是否存在正整数k,使得x∈(2k+
1
2
,2k+1)
时,log3f(x)>x2-kx-2k有解,若存在求出k的值,若不存在说明理由.

查看答案和解析>>

同步练习册答案