精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=lgx+1(1≤x≤100),则g(x)=f2(x)+f(x2)的值域为(
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]

【答案】B
【解析】解:由题意得, ,解得1≤x≤10,
∵f(x)=lgx+1(1≤x≤100),
∴g(x)=f2(x)+f(x2)=(lgx+1)2+1+2lgx
=(lgx)2+4lgx+2,1≤x≤10
设t=lgx,则0≤t≤1,
所以h(t)=t2+4t+2,0≤t≤1
∵h(t)在[0,1]为增函数,且h(0)=2,h(1)=7
∴h(t)=t2+4t+2(0≤t≤1)值域为[2,7],
即g(x)=f2(x)+f(x2)的值域为[2,7],
故选B.
【考点精析】根据题目的已知条件,利用函数的值域的相关知识可以得到问题的答案,需要掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线焦点且倾斜角的直线与抛物线交于点 的面积为

(I)求抛物线的方程;

(II)设是直线上的一个动点,过作抛物线的切线,切点分别为直线与直线轴的交点分别为是以为圆心为半径的圆上任意两点,求最大时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,左顶点为

1)求椭圆的方程;

2)过点作两条相互垂直的直线分别与椭圆交于(不同于点的)两点.试判断直线轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2|x|﹣1.
(1)证明函数f(x)是偶函数;
(2)在如图所示的平面直角坐标系中作出函数f(x)的图象.并根据图象写出函数f(x)的单调区间;

(3)求函数f(x)当x∈[﹣2,4]时的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年某市街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:

年龄

受访人数

5

6

15

9

10

5

支持发展共享单车人数

4

5

12

9

7

3

(Ⅰ)由以上统计数据填写下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系:

年龄低于35岁

年龄不低于35岁

合计

支持

不支持

合计

(Ⅱ)若对年龄在的被调查人中随机选取两人,对年龄在的被调查人中随机选取一人进行调查,求选中的3人中支持发展共享单车的人数为2人的概率.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角三角形中, 为线段上一点,且,沿边上的中线折起到的位置.

(Ⅰ)求证:

(Ⅱ)当平面平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,ACBC=4,四边形ABDE是直角梯形,BDAEBDBABDAE=2,OM分别为CEAB的中点.

(1)求证:OD∥平面ABC

(2)求直线CD和平面ODM所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,数列{an}满足a1=1,an+1f(an)(n∈N*).

(1)证明数列{}是等差数列,并求出数列{an}的通项公式;

(2)记Sna1a2a2a3+…+anan+1,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的右焦点为,短轴的一个端点为,直线交椭圆两点,若,点到直线的距离等于,则椭圆的焦距长为()

A. B. C. D.

查看答案和解析>>

同步练习册答案