精英家教网 > 高中数学 > 题目详情
14.圆:x2+y2-4x+6y=0和圆:x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是(  )
A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=0

分析 要求两个圆的交点的中垂线方程,就是求两个圆的圆心的连线方程,求出两个圆的圆心坐标,利用两点式方程求解即可.

解答 解:由题意圆:x2+y2-4x+6y=0和圆:x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程,就是求两个圆的圆心的连线方程,
圆:x2+y2-4x+6y=0的圆心(2,-3)和圆:x2+y2-6x=0的圆心(3,0),
所以所求直线方程为:$\frac{y+3}{3}=\frac{x-2}{3-2}$,即3x-y-9=0.
故选:C.

点评 本题是基础题,考查两个圆的位置关系,弦的中垂线方程的求法,考查计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.不等式a>$\frac{1}{x}$>-b(a>0,b>0)的解集是{x|$x>\frac{1}{a}$或$x<-\frac{1}{b}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=x2+bx+c,若f(-4)=f(0),f(-2)=-2,则f(x)=x2+4x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果方程ax2+bx+c=0(a<0,△>0)的两个根x1<x2,则不等式ax2+bx+c>0的解是(x1,x2).(画图)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的值域.
(1)y=log2(x2-4x+6);
(2)y=log2(x2-4x-5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知{an}是等比数列,则在下列数列:①{$\frac{1}{{a}_{n}}$}; ②{c-an},c为常数;③{an2};④{a2n};⑤{an+an-1};⑥{lgan}中.成等比数列的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f($\frac{x+1}{x}$)=2x-3,则f(2)等于(  )
A.-5B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知全集U=R,集合A={x∈R|x2-2x>0},集合B={x∈R|y=lg(5-x2)},则B=(-$\sqrt{5}$,$\sqrt{5}$);A∩B=(-$\sqrt{5}$,0)∪(2,$\sqrt{5}$); (∁UA)∪(∁UB)=(-∞,-$\sqrt{5}$]∪[0,2]∪[$\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn=10n-n2
(1)求数列{|an|}的通项公式;
(2)若Hn=|a1|+|a2|+…+|an|,求Hn

查看答案和解析>>

同步练习册答案