£¨2013•·îÏÍÇøһģ£©Ä³º£ÓòÓÐA¡¢BÁ½¸öµºÓ죬BµºÔÚAµºÕý¶«4º£Àï´¦£®¾­¶àÄê¹Û²ìÑо¿·¢ÏÖ£¬Ä³ÖÖÓãȺä§ÓεÄ·ÏßÊÇÇúÏßC£¬ÔøÓÐÓæ´¬ÔÚ¾àAµº¡¢Bµº¾àÀëºÍΪ8º£Àï´¦·¢ÏÖ¹ýÓãȺ£®ÒÔA¡¢BËùÔÚÖ±ÏßΪxÖᣬABµÄ´¹Ö±Æ½·ÖÏßΪyÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£®
£¨1£©ÇóÇúÏßCµÄ±ê×¼·½³Ì£»
£¨2£©Ä³ÈÕ£¬Ñо¿ÈËÔ±ÔÚA¡¢BÁ½µºÍ¬Ê±ÓÃÉùÄÉ̽²âÒÇ·¢³ö²»Í¬ÆµÂʵÄ̽²âÐźţ¨´«²¥ËÙ¶ÈÏàͬ£©£¬A¡¢BÁ½µºÊÕµ½ÓãȺÔÚP´¦·´ÉäÐźŵÄʱ¼ä±ÈΪ5£º3£¬ÎÊÄãÄÜ·ñÈ·¶¨P´¦µÄλÖ㨼´µãPµÄ×ø±ê£©£¿
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²µÄ¶¨Ò壬ÓÉÌâÒâÖªÇúÏßCÊÇÒÔA¡¢BΪ½¹µãÇÒ³¤Ö᳤Ϊ8µÄÍÖÔ²£¬ÓÖ2c=4£¬´Ó¶øµÃ³öa£¬bµÄÖµ¼´¿ÉµÃµ½ÇúÏßCµÄ·½³Ì£»
£¨2£©ÓÉÓÚA¡¢BÁ½µºÊÕµ½ÓãȺ·¢ÉäÐźŵÄʱ¼ä±ÈΪ5£º3£¬Òò´ËÉè´Ëʱ¾àA¡¢BÁ½µºµÄ¾àÀë·Ö±ð±ÈΪ5£º3£¬¼´ÓãȺ·Ö±ð¾àA¡¢BÁ½µºµÄ¾àÀëΪ5º£ÀïºÍ3º£ÀÔÙÉèP£¨x£¬y£©£¬B£¨2£¬0£©£¬ÓÉ|PB|=3£¬¼°ÍÖÔ²µÄ·½³ÌÁгö·½³Ì×é¼´¿É½â³öµãPµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâÖªÇúÏßCÊÇÒÔA¡¢BΪ½¹µãÇÒ³¤Ö᳤Ϊ8µÄÍÖÔ²         £¨3·Ö£©
ÓÖ2c=4£¬Ôòc=2£¬a=4£¬¹Êb=2
3
£¨5·Ö£©
ËùÒÔÇúÏßCµÄ·½³ÌÊÇ
x2
16
+
y2
12
=1
£¨6·Ö£©
£¨2£©ÓÉÓÚA¡¢BÁ½µºÊÕµ½ÓãȺ·¢ÉäÐźŵÄʱ¼ä±ÈΪ5£º3£¬
Òò´ËÉè´Ëʱ¾àA¡¢BÁ½µºµÄ¾àÀë·Ö±ð±ÈΪ5£º3£¨7·Ö£©
¼´ÓãȺ·Ö±ð¾àA¡¢BÁ½µºµÄ¾àÀëΪ5º£ÀïºÍ3º£À       £¨8·Ö£©
ÉèP£¨x£¬y£©£¬B£¨2£¬0£©£¬ÓÉ|PB|=3£¬
¡à
(x-2)2+y2
=3
£¬£¨10·Ö£©¡à
(x-2)2+y2=9
x2
16
+
y2
12
=1
-4¡Üx¡Ü4
£¬£¨12·Ö£©
¡àx=2£¬y=¡À3£¨13·Ö£©£®
¡àµãPµÄ×ø±êΪ£¨2£¬3£©»ò£¨2£¬-3£©£¨14·Ö£©£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²ÎÊÌâÔÚÉú²úʵ¼ÊÖеľßÌåÓ¦Óã¬Éæ¼°µ½ÍÖÔ²·½³ÌµÄÇ󷨣¬ÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÍÖÔ²µÄÖ±Ïß·½³ÌµÄ¹Øϵ£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâת»¯Ë¼ÏëµÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªx£¾0£¬y£¾0£¬ÇÒ
2
x
+
1
y
=1
£¬Èôx+2y£¾m2+2mºã³ÉÁ¢£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
-4£¼m£¼2
-4£¼m£¼2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªSnÊǵȲîÊýÁÐ{an}£¨n¡ÊN*£©µÄÇ°nÏîºÍ£¬ÇÒS6£¾S7£¾S5£¬ÓÐÏÂÁÐËĸöÃüÌ⣬¼ÙÃüÌâµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÒÑÖªSnÊǵȲîÊýÁÐ{an}£¨n¡ÊN*£©µÄÇ°nÏîºÍ£¬ÇÒS5£¼S6£¬S6=S7£¾S8£¬ÔòÏÂÁнáÂÛ´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©µÈ±ÈÊýÁÐ{cn}Âú×ãcn+1+cn=10•4n-1£¬n¡ÊN*£¬ÊýÁÐ{an}Âú×ãcn=2an
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÊýÁÐ{bn}Âú×ãbn=
1
anan+1
£¬TnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®Çó
lim
n¡ú¡Þ
Tn
£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·îÏÍÇøһģ£©ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚÈÎÒâÁ½µãP1£¨x1£¬y1£©ÓëP2£¨x2£¬y2£©µÄ¡°·Ç³£¾àÀ롱¸ø³öÈç϶¨Ò壺Èô|x1-x2|¡Ý|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|x1-x2|£¬Èô|x1-x2|£¼|y1-y2|£¬ÔòµãP1ÓëµãP2µÄ¡°·Ç³£¾àÀ롱Ϊ|y1-y2|£®ÒÑÖªCÊÇÖ±Ïßy=
3
4
x+3ÉϵÄÒ»¸ö¶¯µã£¬µãDµÄ×ø±êÊÇ£¨0£¬1£©£¬ÔòµãCÓëµãDµÄ¡°·Ç³£¾àÀ롱µÄ×îСֵÊÇ
8
7
8
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸