精英家教网 > 高中数学 > 题目详情
已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,F1(-c,0),F2(c,0)分别是左、右焦点,则△PF1F2的内切圆圆心的横坐标为
 
考点:双曲线的简单性质
专题:计算题,数形结合,圆锥曲线的定义、性质与方程
分析:根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|HF1|-|HF2|=2a,从而求得点H的横坐标.
解答: 解:如图所示:F1(-a,0)、F2(a,0),
设内切圆与x轴的切点是点H,
PF1、PF2与内切圆的切点分别为M、N,
∵由双曲线的定义可得|PF1|-|PF2|=2a,
由圆的切线长定理知,|PM|=|PN|,故|MF1|-|NF2 |=2a,
即|HF1|-|HF2|=2a,
设内切圆的圆心横坐标为x,则点H的横坐标为x,
故 (x+c)-(c-x)=2a,∴x=a.
故答案为:a.
点评:本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想,正确运用双曲线的定义是关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在矩形ABCD中,E为CD中点,若
BE
=x
BC
+y
BA
,则x+y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是二次函数,满足f(0)=0,f(x+1)=f(x)+x+1.求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于A,B,交其准线于点C,若
BC
=-2
BF
,|
AF
|=3,则抛物线的方程为(  )
A、y2=12x
B、y2=9x
C、y2=6x
D、y2=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(
x
2
-
π
12
)•f(
x
2
+
π
12
)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<π)的部分图象如图所示,则φ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  )
 
A、f(x)=cosx
B、f(x)=
1
x
C、f(x)=lgx
D、f(x)=
ex-e-x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

王明接到快递公司电话,说他的包裹可能在11:30~12:30送到办公室,但王明按惯例离开办公室的时间是12:00~13:00之间,则他离开办公室前能得到包裹的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据所给条件求直线l的方程.
(1)直线l经过圆x2+y2+2y=0的圆心,且与直线2x+y=0垂直;
(2)直线l过点(-4,8),且到原点的距离为4.

查看答案和解析>>

同步练习册答案