【题目】设函数由方程确定,下列结论正确的是________(请将你认为正确的序号都填上)
① 是上的单调递减函数;
② 对于任意,恒成立;
③ 对于任意,关于的方程都有解;
④ 存在反函数,且对任意,总有成立.
科目:高中数学 来源: 题型:
【题目】某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )
A. 月跑步平均里程的中位数为6月份对应的里程数
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在8、9月
D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和为,若,则称是“紧密数列”.
(1)若数列是“紧密数列”,且,,,,求的取值范围;
(2)若为等差数列,首项,公差,且,判断是否为“紧密数列”,并说明理由;
(3)设数列是公比为的等比数列,若数列与都是“紧密数列”,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2, 3),x1, x2∈[1, 3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与圆相切,圆心的坐标为.
(1)求圆的方程;
(2)设直线与圆没有公共点,求的取值范围;
(3)设直线与圆交于、两点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知双曲线分别为的左,右顶点.
(1)以为圆心的圆与恰有三个不同的公共点,写出此圆的方程;
(2)直线过点,与在第一象限有公共点,线段的垂直平分线过点,求直线的方程;
(3)上是否存在异于点,使成立,若存在,求出所有的坐标,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,数列满足,.
(1)若,,求的值;
(2)在(1)的条件下,求数列的前项和;
(3)若数列中存在三项,,(且)依次成等差数列,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列的前项中最大值为,最小值为,令,.
(1)若,请写出的值;
(2)求证:“数列是等差数列”是“数列是等差数列”的充要条件;
(3)若对任意,有,且,请问:是否存在,使得对于任意不小于的正整数,有成立?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com