精英家教网 > 高中数学 > 题目详情
4.已知命题p:$\frac{1}{x-1}<1$,q:x2-(a+1)x+a>0,若p是q的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,2)B.[1,2]C.(1,2]D.[1,2)

分析 p是q的充分不必要条件,说明由p可以推出q,由q不能推出p,由此先解出p的解集,说明这个解集是q解集的真子集,可以算得a的取值范围.

解答 解:命题p:$\frac{1}{x-1}<1$的解集为:(-∞,1)∪(2,+∞),
命题q:x2-(a+1)x+a>0,即为(x-1)(x-a)>0,
∵p是q的充分不必要条件,
∴1≤a<2,
故选:D.

点评 本题考查了命题真假的判断与应用,属于基础题.解题时应该注意充分必要条件与集合包含关系之间的联系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若角α∈(-π,-$\frac{π}{2}$),则$\sqrt{\frac{1+cosα}{1-cosα}}$-$\sqrt{\frac{1-cosα}{1+cosα}}$=(  )
A.-2tanαB.2tanαC.$\frac{-2}{tanα}$D.$\frac{2}{tanα}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z满足z(1-i)=-1-i,则|z+2|=(  )
A.3B.1C.$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间(1,2)内随机取个实数a,则直线y=2x,直线x=a与x轴围成的面积大于$\frac{16}{9}$的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.中日“钓鱼岛争端”问题越来越引起社会关注,我校对高二600名学生进行了一次“钓鱼岛”知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
分 组频 数频 率
[50,60)20.04
[60,70)80.16
[70,80)100.2
[80,90)160.32
[90,100]140.28
合 计501.00
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:$\frac{x^2}{k}+\frac{y^2}{4-k}=1$表示焦点x在轴上的椭圆,命题q:$\frac{x^2}{k-1}+\frac{y^2}{k-3}=1$表示双曲线,p∨q为真,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.若p:?x∈R,x2+3x+5>0,则¬p:?x0∈R,x02+3x0+5<0
B.“若α=$\frac{π}{3}$,则cosα=$\frac{1}{2}$”的否命题是“若α=$\frac{π}{3}$,则cosα≠$\frac{1}{2}$”
C.已知A,B是△ABC的两个内角,则“A>B”是“sinA>sinB”的充要条件
D.命题“p∨q为真”是命题“p∧q为真”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行图的程序框图后,输出的结果为(  )
A.$\frac{8}{5}$B.$\frac{4}{5}$C.$\frac{4}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知指数函数y=g(x)满足:g($\frac{1}{2}$)=$\sqrt{2}$,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

同步练习册答案