以直角坐标系的原点为极点O,轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
(1),;(2)直线与圆相离.
解析试题分析:本题主要考查直线的参数方程、极坐标方程、点到直线的距离公式、直线与圆的位置关系等基础知识,意在考查考生的运算求解能力、推理论证能力以及转化思想的应用.第一问,利用已知条件列出直线的参数方程,利用极坐标与直角坐标的转化公式,得到点C的直角坐标,从而得到圆C的标准方程,再利用极坐标与直角坐标的转化公式得到圆C的极坐标方程;第二问,将直线的参数方程先转化成普通方程,利用点到直线的距离公式求出距离,与半径比较大小,来判断直线与圆的位置关系.
试题解析:(1)直线的参数方程,即(为参数)
由题知点的直角坐标为,圆半径为,
∴圆方程为将代入
得圆极坐标方程 5分
(2)由题意得,直线的普通方程为,
圆心到的距离为,
∴直线与圆相离. 10分
考点:直线的参数方程、极坐标方程、点到直线的距离公式、直线与圆的位置关系.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,以为极点,轴非负半轴为极轴建立坐标系,已知曲线的极坐标方程为,直线的参数方程为: (为参数),两曲线相交于两点. 求:
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是:(是参数).
(1)将曲线和曲线的方程转化为普通方程;
(2)若曲线与曲线相交于两点,求证;
(3)设直线交于两点,且(且为常数),过弦的中点作平行于轴的直线交曲线于点,求证:的面积是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程.
(2)求经过两圆交点的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C的极坐标方程为,直线的参数方程为( t为参数,0≤<).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线经过点(1,0),求直线被曲线C截得的线段AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com