精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|(x-2)(x+3)<0},B={x|y=$\sqrt{\frac{1}{x+1}}$},则A∩(∁RB)=(  )
A.[-3,-1]B.(-3,-1]C.(-3,-1)D.[-1,2]

分析 求出A,B中不等式的解集确定出B,找出B的补集,求出A与B补集的交集即可.

解答 解:A={x|(x-2)(x+3)<0}=(-3,2),B={x|y=$\sqrt{\frac{1}{x+1}}$}=(-1,+∞),
∴∁RB=(-∞,-1]
∴A∩(∁RB)=(-3,-1].
故选:B.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.类比实数的运算性质猜想复数的运算性质:
①“mn=nm”类比得到“z1z2=z2z1”;
②“|m•n|=|m|•|n|”类比得到“|z1•z2|=|z1|•|z2|”;
③“|x|=1⇒x=±1”类比得到“|z|=1⇒z=±1”
④“|x|2=x2”类比得到“|z|2=z2
以上的式子中,类比得到的结论正确的个数是(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知空间三点A(-1,2,1),B(1,2,1),C(-1,6,4)
(1)求以向量$\overrightarrow{AB},\overrightarrow{AC}$为一组邻边的平行四边形的面积S;
(2)若向量$\overrightarrow{a}$分别与向量$\overrightarrow{AB}$,$\overrightarrow{AC}$垂直,且|$\overrightarrow{a}$|=10,求向量$\overrightarrow{a}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线f(x)=ax-1+1(a>1)恒过定点A,点A恰在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.5C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥ABC-A1B1C1中,△ABC是边长为2的等边三角形,AA1=4,A1在底面ABC上的射影为BC的中点E,D是B1C1的中点.
(Ⅰ)证明:A1D⊥A1C;
(Ⅱ)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=($\frac{2}{1+{e}^{x}}$-1)•sinx的图象大致形状为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设α,β是两个不同的平面,l是直线且l?α,则“α∥β”是“l∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(Ⅰ)求图中a的值;
(Ⅱ)估计该次考试的平均分$\overline{x}$(同一组中的数据用该组的区间中点值代表);
(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
 晋级成功晋级失败合计
16  
  50
合计   
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,正多边形的周长可无限逼近圆的周长,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,利用刘徽的割圆术设计的程序框图如图所示,若输出的n=96,则判断框内可以填入(  )(参考数据:sin7.5°≈0.1305,sin3.75°≈0.06540,sin1.875°≈0.03272)
A.p≤3.14B.p≥3.14C.p≥3.1415D.p≥3.1415926

查看答案和解析>>

同步练习册答案