精英家教网 > 高中数学 > 题目详情
已知定义在区间[-2,t](t>-2)上的函数f(x)=(x2-3x+3)ex
(Ⅰ)当t>1时,求函数y=f(x)的单调区间;
(Ⅱ)设m=f(-2),n=f(t).试证明:m<n;
(Ⅲ)设g(x)=f(x)+(x-2)ex,当x>1时试判断方程g(x)=x根的个数.
(Ⅰ)因为f′(x)=(x2-3x+3)•ex+(2x-3)•ex=x(x-1)•ex
当t>1时,由f′(x)>0,可得t>x>1或-2<x<0;由f′(x)<0,可得0<x<1
所以f(x)在(-2,0),(1,t)上递增,在(0,1)上递减.
(Ⅱ)证明:由f′(x)>0,可得x>1或x<0;由f′(x)<0,可得0<x<1
所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,所以f(x)在x=1处取得极小值f(1)=e.
又∵f(-2)=13e-2<e,所以f(x)仅在x=-2处取得[-2,t]上的最小值f(-2)
从而当t>-2时,f(-2)<f(t),即m<n.
(Ⅲ)设g(x)=f(x)+(x-2)ex=(x-1)2ex,当x>1时判断方程g(x)=x根的个数等价于(x-1)2ex=x当x>1时根的个数
设h(x)=(x-1)2ex-x(x>1),则h′(x)=(x2-1)ex-1,
再设k(x)(x2-1)ex-1(x>1),则k′(x)=(x2+2x-1)ex
当x>1时,k′(x)>1,即k(x)在(1,+∞)单调递增
∵k(1)=-1<0,k(2)=3e2-1>0
∴在(1,2)上存在唯一x0,使k(x0)=0,即存在唯一x0∈(1,2),使h′(x0)=0
函数h(x)在(1,x0)上,h′(x0)<0,函数单调减,在(x0,+∞)上,h′(x0)>0,函数单调增,
∴h(x)min=h(x0)<h(1)=-1<0
∵h(2)=e2-2>0
y=h(x)的大致图象如图,
由此可得y=h(x)在(1,+∞)上只有一个零点,即g(x)=x,x>1时只有1个实根.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,x=±1是函数f(x)=ax3+bx2+cx+d的两个极值点,f′(x)为函数f(x)的导函数,则不等式x•f′(x)>0的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

经过点P(2,1)且与曲线f(x)=x3-2x2+1相切的直线l的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=-x3+3x在[-2,2]上的最大值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex-ax(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)如果对任意x∈[2,+∞),不等式f(x)>x+x2恒成立,求实数a的取值范围;
(Ⅲ)设n∈N*,求证:(
1
n
n+(
2
n
n+(
3
n
n+…+(
n
n
n
e
e-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(1)若x=1为f(x)的极值点,求a的值.
(2)若y=f(x)的图象在(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=x3-
1
2
x2-2x+5
,若对任意x∈[0,2]都有f(x)<m成立,则m的取值范围为(  )
A.(7,+∞)B.(8,+∞)C.[7,+∞)D.(9,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-3x2+2,若x∈[-2,3],则函数的值域为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ex+sinx,g(x)=x-2;
(1)求证:函数y=f(x)在[0,+∞)上单调递增;
(2)设P(x1,f(x1)),Q(x2,g(x2))(x1≥0,x2>0),若直线PQx轴,求P,Q两点间的最短距离.

查看答案和解析>>

同步练习册答案