精英家教网 > 高中数学 > 题目详情
计算:4log420-ln
e
+lg4-lg
1
25
考点:对数的运算性质
专题:函数的性质及应用
分析:根据指数的运算性质和对数的运算性质,直接运算可得答案.
解答: 解:4log420-ln
e
+lg4-lg
1
25

=2+1-
1
2
+lg(4÷
1
25

=2+1-
1
2
+lg100
=2+1-
1
2
+2
=4
1
2
点评:本题考查的知识点是指数的运算性质和对数的运算性质,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知图甲为函数y=f(x)的图象,则图乙中的图象对应的函数可能为(  )
A、y=|f(x)|
B、y=f(|x|)
C、y=f(-|x|)
D、y=-f(-|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:

在2点至3点之间的某一时刻,分针与时针分别在钟面上“2”字的两侧,而且与“2”字的距离相等,这一时刻是(  )
A、2时6
3
13
B、2时7
1
13
C、2时8
5
13
D、2时9
3
13

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx-
π
6
)-2cos2
ω
2
x+1(ω>0),直线y=
3
与函数y=f(x)图象相邻两交点的距离为π.(Ⅰ)求ω的值;
(Ⅱ)求函数f(
π
3
-x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)对一切实数x,y都有g(x+y)-g(y)-x(x+2y+1)成立,是g(x)=0,且f(x)=
g(x)-3x+3
x

(1)求g(0)的值;
(2)求f(x)的解析式;
(3)已知k∈R,设P:不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,Q:f(|2x-1|)+k
2
|2x-1|
-3k=0有三个不同的实数解,如果满足P成立的k的集合记为A,满足Q成立的k的集合记为B,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

从集合{-1,1,2}中随机选取一个数记为m,从集合{-1,2}中随机选取一个数记为n,则方程
x2
m
+
y2
n
=1表示双曲线的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在圆的直径AB的延长线上任取一点C,过点C作圆的切线CD,切点为D,∠ACD的平分线交AD于点E,则∠CED
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|=2|
b
|,则
a
+
b
a
-
b
的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题:①不等式
3
x-1
<x+1的解集为{x|x<-2,或x>2};②已知a,b均为正数,且
1
a
+
4
b
=1,则a+b的最小值为9;③已知x,y均为正数,且x+3y-2=0,则3x+27y+1的最小值为7;其中正确的有
 
.(以序号作答)

查看答案和解析>>

同步练习册答案