精英家教网 > 高中数学 > 题目详情
(1)化简
a-4b2
3ab2
(a>0,b>0)(结果写成分数指数幂形式);
(2)计算log2
7
48
+log212-
1
2
log242的值.
考点:对数的运算性质
专题:函数的性质及应用
分析:(1)利用分数指数幂的运算法则即可得出;
(2)利用对数的运算法则即可得出.
解答: 解:(1)原式=
a-4b2a
1
3
b
2
3
=
a-
11
3
b
8
3
=a-
11
6
b
4
3

(2)原式=
1
2
log2
7
48
×122
42
=
1
2
log2
1
2
=-
1
2
点评:本题考查了分数指数幂的运算法则、对数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

比较logn(n+1)和logn+1n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)函数y=
(x-2)0
x+1
+log2x(x+2)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}满足a3•a2n-3=4n(n>1),则log2a1+log2a3+log2a5+…+log2a2n-1=(  )
A、n2
B、(n+1)2
C、n(2n-1)
D、(n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(
π
4
-2x)×sin(
π
4
+2x),则f(x)的最小正周期是(  )
A、
π
2
B、π
C、2π
D、
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤3},集合B={x|
1
x
<0},则A∪B=(  )
A、{x|-1<x<0}
B、{x|-1≤x<0}
C、{x|x<0}
D、{x|x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

三个数e-
2
,log0.23,lnπ的大小关系为(  )
A、log0.23<e-
2
<lnπ
B、log0.23<lnπ<e-
2
C、e-
2
<log0.23<lnπ
D、log0.23<lnπ<e-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:y2=x和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)(y0≥1)做两条直线与⊙M相切于A、B两点,分别交抛物线于E、F两点.
(1)当∠AHB的角平分线垂直x轴时,求直线EF的斜率;
(2)若直线AB在y轴上的截距为t,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线y2=2px(p>0)上点(2,a)到焦点F的距离为3,直线l:my=x+t(t≠0)交抛物线C于A,B两点,且满足OA⊥OB.圆E是以(-p,p)为圆心,p为直径的圆.
(1)求抛物线C和圆E的方程;
(2)设点M为圆E上的任意一动点,求当动点M到直线l的距离最大时的直线方程.

查看答案和解析>>

同步练习册答案