精英家教网 > 高中数学 > 题目详情
设函数f(x)=
(Ⅰ)求函数y=f(x)取最值时x的取值集合;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满(2a-c)cosB=bcosC,求函数f(A)的取值范围.
【答案】分析:(1)利用两角和差的正弦公式化简函数f(x)的解析式为 sin(+),哟此求得函数y=f(x)取最值时x的取值集合.
(2)根据(2a-c)cosB=Bcosc,利用正弦定理可得 2conB=1,B=. 再由f(A)═sin( +),以及 0<A<,求得函数f(A)的取值范围.
解答:解:(1)∵函数f(x)==+-= (sin+cos)=sin(+),…(4分)
故当 +=kπ+,k∈z 时,f(x)取最值,
此时x取值的集合:{x|x=kπ+ },k∈z.  …(6分)
(2)∵(2a-c)cosB=Bcosc,∴(2sinA-sinC)cosB=sinBcosC,
2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA.     …(8分)
∴2conB=1,∴B=
∵f(A)═sin( +),且 0<A<
+
<f(A)≤,故函数f(A)的取值范围为(].     …(12分)
点评:本题主要考查两角和差的正弦公式、正弦定理的应用,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3+3x2+6x+4,a,b都是实数,且f(a)=14,f(b)=-14,则a+b的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn与通项an满足Sn=
1
2
(1-an).
(1)求数列{an}的通项公式;
(2)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求Tn=
1
b1
+
1
b2
+
1
b3
+
1
bn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1  (x>0)
-1(x<0)
,则不等式xf(x)+x≤4的解集是
(-∞,0)∪(0,2]
(-∞,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-1,当自变量x由1变到1.1时,函数的平均变化率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )

查看答案和解析>>

同步练习册答案