精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3-(x+2)(2-x)
的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A.
(2)记p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.
分析:(1)要使f(x)有意义,则需由3-(x+2)(2-x)≥0,按二次不等式的解法求解即可,
(2)利用不等式的解法求解出集合A,B,结合二者的关系得出关于字母a的不等式,从而求解出a的取值范围.
解答:解:(1)∵3-(x+2)(2-x)≥0
∴x≥1或x≤-1.
∴A={x|x≥1或x≤-1}
(2)g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域B由(x-a-1)(2a-x)>0(a<1)解得,
∴B={x|2a<x<a+1}
∵p是q的必要不充分条件,
∴p对应的集合A包含q对应的集合B,即A?B,
∴2a≥1或a+1≤-1,解得
1
2
a<1或a≤-2.
故实数a的取值范围为:
1
2
a<1或a≤-2.
点评:本题通过求函数定义域考查必要条件,充分条件与充要条件,本题解题的关键是根据条件类型求参数取值范围问题,进一步转化为集合间的关系解决,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案