精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.
(1)求证:f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.

(1)见解析(2)见解析(3)最大值为2,最小值为-4

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试判断并用定义证明函数的单调性;
(2)当时,求证函数存在反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数对任意的恒有成立.
(1)记如果为奇函数,求b,c满足的条件;
(2)当b=0时,记)上为增函数,求c的取值范围;
(3)证明:当时,成立;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)=2x2-2ax+3在区间[-1,1]上最小值记为g(a).
(1)求g(a)的函数表达式;
(2)求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,说明a可取哪些值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-.
(1)求证:f(x)在R上是减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数)在是单调减函数,且为偶函数.
(1)求的解析式;
(2)讨论的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a∈R,f(x)= (x∈R),试确定a的值,使f(x)为奇函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数y=f(x)的定义域是[0,2],求函数g(x)=的定义域.

查看答案和解析>>

同步练习册答案