【题目】以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角性”.
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )
A.2017×22015
B.2017×22014
C.2016×22015
D.2016×22014
科目:高中数学 来源: 题型:
【题目】如图1,在△中, , , 分别为边的中点,点分别为线段的中点.将△沿折起到△的位置,使.点为线段上的一点,如图2.
(Ⅰ)求证: ;
(Ⅱ)线段上是否存在点使得平面?若存在,求出的长,若不存在,请说明理由;
(Ⅲ)当时,求直线与平面所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集为实数集R,A={x|3≤x<7},B={x| ≤2x≤8},C={x|x<a}.
(1)求R(A∪B)
(2)如果A∩C≠,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为ξ
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组到社区了解参加健美操运动人员的情况,用分层抽样的方法抽取了40人进行调查,按照年龄分成五个小组: ,并绘制成如图所示的频率分布直方图.
(1)求该社区参加健美操运动人员的平均年龄;
(2)如果研究小组从该样本中年龄在和的6人中随机地抽取出2人进行深入采访,求被采访的2人,年龄恰好都在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益函数为R(x)= ,其中x是仪器的产量(单位:台);
(1)将利润f(x)表示为产量x的函数(利润=总收益﹣总成本);
(2)当产量x为多少台时,公司所获利润最大?最大利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在直角坐标系中圆C的参数方程为(为参数),以原点O为极点, 轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线与曲线交于两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象的一部分如图所示,函数g(x)=f(x+ ),则下列结论正确的是( )
A.函数g(x)的奇函数
B.函数f(x)与g(x)的图象均关于直线x=﹣ π对称
C.函数f(x)与g(x)的图象均关于点(﹣ ,0)对称
D.函数f(x)与g(x)在区间(﹣ ,0)上均单调递增
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com