精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=aln x (aR).

(1)a=1时,求f(x)x[1,+∞)内的最小值;

(2)f(x)存在单调递减区间,求a的取值范围;

(3)求证ln(n+1)> (nN*).

【答案】(1)最小值为f(1)=1.(2)a< .(3)见解析

【解析】

试题(1)可先求f′x),从而判断fx)在x∈[1+∞)上的单调性,利用其单调性求fx)在x∈[1+∞)最小值;

2)求h′x),可得,若fx)存在单调递减区间,需h′x)<0有正数解.从而转化为:x0的解.通过对aa=0a0与当a0三种情况讨论解得a的取值范围;

3)可用数学归纳法予以证明.当n=1时,lnn+1=ln23ln2=ln81,即时命题成立;设当n=k时,命题成立,即成立,再去证明n=k+1时,成立即可(需用好归纳假设).

试题解析:(1,定义域为

上是增函数.

2)因为

因为若存在单调递减区间,所以有正数解.

的解

时,明显成立 .

时,开口向下的抛物线,总有的解;

时,开口向上的抛物线,

即方程有正根.

因为

所以方程有两正根.

时,

,解得

综合①②③知:

或:

的解

的解,

的解,

的最大值

3)(法一)根据()的结论,当时,,即

,则有

(法二)时,

,即时命题成立.

设当时,命题成立,即

时,

根据()的结论,当时,,即

,则有

则有,即时命题也成立.

因此,由数学归纳法可知不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形,的中点,平面的中点,

1)证明:平面

2)如果二面角的正切值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司全年的纯利润为,其中一部分作为奖金发给位职工,奖金分配方案如下首先将职工工作业绩(工作业绩均不相同)从大到小,1排序,1位职工得奖金,然后再将余额除以发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.

(1)为第位职工所得奖金额,试求并用表示(不必证明)

(2)证明并解释此不等式关于分配原则的实际意义;

(3)发展基金与有关,记为对常数,变化时,.(可用公式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解地区足球特色学校的发展状况,某调查机构得到如下统计数据:

年份

2014

2015

2016

2017

2018

足球特色学校(百个)

0.30

0.60

1.00

1.40

1.70

(Ⅰ)根据上表数据,计算的相关系数,并说明的线性相关性强弱(已知:,则认为线性相关性很强;,则认为线性相关性一般;,则认为线性相关性较弱);

(Ⅱ)求关于的线性回归方程,并预测地区2019年足球特色学校的个数(精确到个)

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,定义函数对于两个集合,定义集合. 已知, .

(Ⅰ)写出的值,并用列举法写出集合;

(Ⅱ)用表示有限集合所含元素的个数,求的最小值;

(Ⅲ)有多少个集合对,满足,且?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,当P(xy)不是原点时,定义P伴随点

P是原点时,定义P伴随点为它自身,平面曲线C上所有点的伴随点所构成的曲线定义为曲线C伴随曲线”.现有下列命题:

若点A伴随点是点,则点伴随点是点A

单位圆的伴随曲线是它自身;

若曲线C关于x轴对称,则其伴随曲线关于y轴对称;

一条直线的伴随曲线是一条直线.

其中的真命题是_____________(写出所有真命题的序列).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求曲线处的切线方程;

2R上的单调递增函数,求a的取值范围;

3若函数对任意的实数,存在唯一的实数,使得成立,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是抛物线上一动点,则点P到点的距离与P到直线的距离和的最小值是(

A.B.C.3D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次考试中,5名同学的数学、物理成绩如表所示:

学生

数学

89

91

93

95

97

物理

87

89

89

92

93

请在图中的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;

要从4名数学成绩在90分以上的同学中选2名参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望

参考公式:线性回归方程;,其中

查看答案和解析>>

同步练习册答案