精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,

,圆与椭圆在第一象限交于点,在第二象限交于点.

(1)求椭圆的方程;

(2)求的最小值,并求出此时圆的方程;

(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:

为定值.

【答案】(1);(2);(3)详见解析.

【解析】试题分析:(1)依据题设条件求出参数即可;(2)依据题设条件及向量的数量积公式建立目标函数,再借助该函数取得最小值时求出圆的方程;(3)借助直线与椭圆的位置关系进行分析推证:

试题解析:

(1) 由题意知, ,得.

故椭圆的方程为.

(2) 与点关于轴对称,设,由点椭圆上,则,得

.由题意知, ,时, 取得最小值.此时, ,故.又点在圆上,代入圆的方程,得.

故圆的方程为.

(3)设,则的方程为.令,得.同理可得, . 故. ①

都在椭圆上, ,代入①得, .即得为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).

①命题“若,则”的否命题为:“若,则”;

②命题“若,则”的逆否命题为真命题;

③条件,条件,则的充分不必要条件;

④已知时,,若是锐角三角形,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)直线在矩阵所对应的变换下得到直线,求的方程.

2)已知点是曲线为参数,)上一点,为坐标原点直线的倾斜角为,求点的坐标.

3)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.经数据处理后得到该样本的频率分布直方图,其中质量指标值不大于1.50的茎叶图如图所示,以这100件产品的质量指标值在各区间内的频率代替相应区间的概率.

(1)求图中的值;

(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);

(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,第二组,第八组,如图是按上述分组方法得到的频率分布直方图的一部分.

1)求第七组的频率;

2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);

3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数.

1)求函数的单调区间;

2)是否存在整数,对于任意,关于的方程在区间上有唯一实数解?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中, 的中点, 的中点,且为正三角形.

(1)求证: 平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆,圆的半径分别为12,且两圆外切于点,点分别是圆,圆上的两动点,则的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在点处的切线方程为,求函数的极值;

2)若,对于任意,当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案