精英家教网 > 高中数学 > 题目详情
. (本小题满分12分)
如图,四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,已知AB=,∠APB=∠ADB=60°

(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)求PH与平面PAD所成的角的大小.
(1) 
   又 

(2)过H作HE⊥AD于E,连结PE,则AD⊥平面PEH
又AD平面PAD
过H作HG⊥PE于G,则HG⊥平面PAD,

 ∴△APB为等边三角形
 ,
在Rt△ADH中,可得HD="1" ;在Rt△DEH中 ,可得HE=
在Rt△PHE中 ,tan∠HPE=
故PH与平面PAD所成角为arctan
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分).若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,求:

(1)点P在直线上的概率;
(2)点P在圆外的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在正方体中,如图E、F分别是,CD的中点,
⑴求证:平面ADE;
⑵点到平面ADE的距离.      
  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,已知在直四棱柱中,

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三角形底面,其中

(I)求证:平面
(II)求四棱的体积
(III)求与底面所成角的余弦值(文科)
求二面角的余弦值(理科)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四边形都是边长为的正方形,点E是的中点,
(1) 求证:平面BDE;
(2) 求证:平面⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,侧面PAD丄底面ABCD,侧棱PA="PD" =,底面 ABCD为直角梯形,其中BC//AD,AB丄AD,AD=2AB=2BC=2,0为AD中点.

①求证PO丄平面ABCD
②求异面直线PB与CD的夹角;
③求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线,则的关系是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )
A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定

查看答案和解析>>

同步练习册答案