精英家教网 > 高中数学 > 题目详情

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

(1)求频率分布直方图中a的值;

(2)求这50名问卷评分数据的中位数;

(3)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

【答案】(1)0.006;(2)76;(3).

【解析】

1)由即可求得;(2)设中位数为,由即可求得;(3)先分别求出内的人数,再按古典概型的概率计算公式计算即可.

(1)由频率分布直方图,可得(0.004+a+0.0156+0.0232+0.0232+0.028×101

解得a0.006

(2)由频率分布直方图,可设中位数为m

则有(0.004+0.006+0.0232×10+m70×0.0280.5

解得中位数m76

(3)由频率分布直方图,可知在[4050)内的人数:0.004×10×502

[5060)内的人数:0.006×10×503

设在[4050)内的2人分别为a1a2,在[5060)内的3人分别为B1B2B3

则从[4060)的问卷者中随机抽取2人,基本事件有10种,分别为:

a1a2),(a1B1),(a1B2),(a1B3),(a2B1),

a2B2),(a2B3),(B1B2),(B1B3),(B2B3),

其中2人评分都在[5060)内的基本事件有(B1B2),(B1B3),(B2B3)共3种,

故此2人评分都在[5060)的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)求证:图2中,平面平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定数列,若满足),对于任意,都有,则称数列为指数数列.

1)已知数列的通项公式分别为,试判断是不是指数数列(需说明理由);

2)若数列满足:,证明:是指数数列;

3)若是指数数列,,证明:数列中任意三项都不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)设a,b∈M,证明:|ab|+1>|a|+|b|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平行四边形中,边的中点,将沿折起,使点到达点的位置,且

(1)求证; 平面平面

(2)若平面和平面的交线为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:

(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?

甲工艺

乙工艺

总计

一等品

非一等品

总计

P(K2≥k)

0.1

0.05

0.01

k

2.706

3.841

6.635

附:,其中

(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:

是等边三角形 ③AB与平面BCD所成的角是ABCD所成角为,其中错误的结论个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知中心在原点,顶点A1A2x轴上,其渐近线方程是,双曲线过点

(1)求双曲线方程

(2)动直线经过的重心G,与双曲线交于不同的两点MN,问:是否存在直线,使G平分线段MN,证明你的结论

查看答案和解析>>

同步练习册答案