精英家教网 > 高中数学 > 题目详情
12.己知幂函数y=f(x)的图象过点(2,4),则f(log2$\frac{\sqrt{2}}{2}$)=$\frac{1}{4}$.

分析 先求出幂函数y=f(x)的解析式,再化简log2$\frac{\sqrt{2}}{2}$,求出f(log2$\frac{\sqrt{2}}{2}$)的值.

解答 解:设幂函数y=f(x)=xα
其图象过点(2,4),
∴2α=4,
解得α=2;
∴f(x)=x2
∴f(log2$\frac{\sqrt{2}}{2}$)=f(log2${2}^{-\frac{1}{2}}$)=f(-$\frac{1}{2}$)=${(-\frac{1}{2})}^{2}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查了求幂函数的解析式以及对数式的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知正实数a,b,c满足$\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1$,求证:$a+\frac{b}{2}+\frac{c}{3}≥9$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知O为△ABC内一点,且$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则△AOC与△ABC的面积之比是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2-2x,则下列各点中不在函数图象上的是(  )
A.(1,-1)B.(-1,3)C.(2,0)D.(-2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在等腰直角△ABC中,过直角顶点C作射线CM交AB于M,则使得AM小于AC的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2x+$\frac{m}{{2}^{x}}$(m为常数)为偶函数.
(1)求实数m的值;
(2)判断f(x)在[0,+∞)上的单调性,并用单调性的定义证明;
(3)求不等式f(logax)>$\frac{5}{2}$(a>0且a≠1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某场排球赛决赛将在甲队与乙队之间展开,据以往统计,甲队在每局比赛中胜乙队的概率为$\frac{2}{3}$,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛,则甲队以3:1获胜的概率为(  )
A.$\frac{2}{3}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)若x是某三角形的一个内角,且f(x)=-$\frac{\sqrt{2}}{2}$,求角x的大小;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的最小值及取得最小值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设方程x2-$\sqrt{10}$x+2=0的两根为α、β,求$lo{g}_{2}\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$的值.

查看答案和解析>>

同步练习册答案