分析 (1)由已知分θ的终边所在象限在终边上任取一点,利用三角函数的定义求出θ的正弦和余弦值得答案;
(2)直接分n为偶数和奇数化简求值.
解答 解:(1)∵角θ的终边在直线y=-2x上,∴tanθ=-2,
在直线y=-2x上取一点A(-1,2),则OA=$\sqrt{5}$,
∴sinθ=$\frac{2\sqrt{5}}{5}$,cos$θ=-\frac{\sqrt{5}}{5}$,则5sinθ-$\frac{2}{cosθ}$=$5×\frac{2\sqrt{5}}{5}-\frac{2}{-\frac{\sqrt{5}}{5}}$=$4\sqrt{5}$.
在直线y=-2x上取一点B(1,-2),则OA=$\sqrt{5}$,
∴sinθ=-$\frac{2\sqrt{5}}{5}$,cosθ=$\frac{\sqrt{5}}{5}$,则5sinθ-$\frac{2}{cosθ}$=$5×(-\frac{2\sqrt{5}}{5})-\frac{2}{\frac{\sqrt{5}}{5}}=-4\sqrt{5}$;
(2)当n为偶数时,$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)•cos(α-nπ)}$=$\frac{sinα+sinα}{sinαcosα}=\frac{2}{cosα}$.
当n为奇数时,$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)•cos(α-nπ)}$=$\frac{-sinα-sinα}{-sinα•(-cosα)}=-\frac{2}{cosα}$.
点评 本题考查三角函数的化简与求值,考查了三角函数的定义,训练了利用诱导公式化简求值,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com