精英家教网 > 高中数学 > 题目详情

【题目】某蔬菜加工厂加工一种蔬菜,并对该蔬菜产品进行质量评级,现对甲、乙两台机器所加工的蔬菜产品随机抽取一部分进行评级,结果(单位:件)如表1

1)若规定等级为合格等级,等级为优良等级,能否有的把握认为“蔬菜产品加工质量与机器有关”?

2)表2是用清水千克清洗该蔬菜千克后,该蔬菜上残留的农药微克的统计表,若用解析式作为的回归方程,求出的回归方程.(结果精确到)(参考数据:.

【答案】1)有的把握认为“蔬菜产品加工质量与机器有关”(2

【解析】

1)根所给数据,利用公式求得,与临界值比较,即可求得答案;

2)根据所给数据求得,即可求得其直线回归方程.

1

所以有的把握认为蔬菜产品加工质量与机器有关”.

2

可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆过点

(1)求椭圆的方程,并求其离心率;

(2)过点轴的垂线,设点为第四象限内一点且在椭圆上(点不在直线上),点关于的对称点为,直线交于另一点.设为原点,判断直线与直线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①正切函数图象的对称中心是唯一的;

②若函数的图像关于直线对称,则这样的函数是不唯一的;

③若是第一象限角,且,则

④若是定义在上的奇函数,它的最小正周期是,则

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,菱形所在的平面,中点,上的点.

1)求证:平面平面

2)若的中点,当时,是否存在点,使直线与平面的所成角的正弦值为?若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我省5名医学专家驰援湖北武汉抗击新冠肺炎疫情现把专家全部分配到ABC三个集中医疗点,每个医疗点至少要分配1人,其中甲专家不去A医疗点,则不同分配种数为(

A.116B.100C.124D.90

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:当时,函数上是单调函数

(2)时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知等差数列的公差为,前项和为,且

1)求数列的通项公式与前项和

2)将数列的前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列的前三项,记数列的前项和为,若存在,使得对任意,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;

设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;

线性回归方程必过();

在一个2×2列联中,由计算得则有99%的把握确认这两个变量间有关系;

` 其中错误的个数是 ( )

本题可以参考独立性检验临界值表:


0.5

0.40

0.25

0.15

0.10

0.05

0.25

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.535

7.879

10.828

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案