精英家教网 > 高中数学 > 题目详情
用1,2,3,4,5,6,7,8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数,共有多少个?

解:先将1与2,3与4,5与6捆绑起来分别看作一个元素再与7,8排列,

所以共有AAAAA=576种.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、[理]用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中,有且只有两个偶数相邻,则这样的六位数的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中奇数共有
36
36
个.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4,5这5个数字组成无重复数字的五位数,其中2,3相邻的偶数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东模拟)用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为
432
432

查看答案和解析>>

同步练习册答案