精英家教网 > 高中数学 > 题目详情
已知f(x)为R上增函数,且对任意x∈R,都有f[f(x)-3x]=4,则f(2)=
 
考点:函数单调性的性质
专题:函数的性质及应用
分析:因为f(x)是R上的增函数,所以若f(x)-3x不是常数,则f[f(x)-3x]便不是常数.而已知f[f(x)-3x]=4,所以f(x)-3x是常数,设f(x)-3x=m,所以f(m)=4,f(x)=3x+m,所以f(m)=3m+m=4,容易知道该方程有唯一解,m=1,所以f(x)=3x+1,所以便可求出f(2).
解答: 解:根据题意得,f(x)-3x为常数,设f(x)-3x=m,则f(m)=4,f(x)=3x+m;
∴3m+m=4,易知该方程有唯一解,m=1;
∴f(x)=3x+1;
∴f(2)=10;
故答案为:10.
点评:考查对于单调函数,当自变量的值是变量时,函数值也是变量,单调函数零点的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=log0.5(-2x2+ax+3),若函数f(x)为偶函数,且x∈(m,n)的值域为(1,+∞),求a,m,n.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求f(0)的值;
(2)判断函数f(x)的单调性,并证明你的结论;
(3)如果f(-1)=2,求不等式f(
10
1-x
)<
4
f(x)
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(3,1)和(-4,6)在直线3x-2y+a=0的同侧,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4…),Sn为数列{bn}的前n项和,且4Sn=bnbn+1,b1=2(n=1,2,3…).
(1)求数列{bn},{an}的通项公式;
(2)设cn=bn2
1
3an
+
2
3
,求数列{cn}的前n项的和Pn
(3)(选做)证明:对一切n∈N*,有
n=1
an2
7
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)在区间[-5,5]上是增函数,那么下列不等式中成立的是(  )
A、f(4)>f(-π)>f(3)
B、f(π)>f(4)>f(3)
C、f(4)>f(3)>f(π)
D、f(-3)>f(-π)>f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

棱长为1的正方体ABCD-A1B1C1D1中,点P1,P2分别是线段AB,BD1(不包括端点上的动点,且线段P1P2平行于平面A1ADD1,则四面体P1P2AB1的体积的最大值是(  )
A、
1
24
B、
1
12
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+(m2+2)+m在(-1,1)上零点的个数为(  )
A、1B、2C、0D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其底面为菱形,该几何体的体积是
 

查看答案和解析>>

同步练习册答案