精英家教网 > 高中数学 > 题目详情
13.设f:x→x2是集合A到B的函数,如果集合B={1},则集合A不可能是(  )
A.{1}B.{-1}C.{1,-1}D.{-1,0,1}

分析 根据映射的定义,先求出集合A中的像,即可得出结论.

解答 解:由已知x2=1,解之得,x=±1.
故选:D.

点评 本题考查的知识点是映射的定义和象集合的运算,其中根据映射的定义求出集合A是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.写出函数y=|x-1|的单调增区间是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知m为一条直线,α,β为两个不同的平面,则下列说法正确的是(  )
A.若m∥α,α∥β,则m∥βB.若α⊥β,m⊥α,则m⊥βC.若m∥α,α⊥β,则m⊥βD.若m⊥α,α∥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数f(x)与g(x)是相同函数的是(  )
A.$f(x)=\sqrt{{{(x-1)}^2}}$;g(x)=x-1B.$f(x)=\frac{{{x^2}-1}}{x-1}$;g(x)=x+1
C.f(x)=lg(x+1)+lg(x-1);g(x)=lg(x2-1)D.f(x)=ex+1.ex-1;g(x)=e2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)定义域为x∈[-1,1]且为奇函数.当x∈[-1,0)时,$f(x)=\frac{1}{4^x}-\frac{1}{2^x}$,则f(x)在x∈[-1,1]上的值域为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设U=R,M={x|x≥2},N=x|-1≤x<4},求:
(1)M∩N;             
(2)(∁UN)∪(M∩N).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若命题“?a∈[2,4],使ax2+(a-3)x-3>0”是真命题,则实数x的取值范围是$(-∞,-1)∪(\frac{3}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cos({2x-\frac{π}{3}})+{sin^2}x-{cos^2}x+\sqrt{2}$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若存在$t∈[{\frac{π}{12},\frac{π}{3}}]$满足[f(t)]2-2$\sqrt{2}$f(t)-m>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知全集为R,集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∩B={x|3≤x<4};A∪(∁RB)={x|x<4}.

查看答案和解析>>

同步练习册答案